化學系
Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/57
國立臺灣師範大學化學系座落於公館校區理學院大樓。本系成立於民國五十一年,最初僅設大學部。之後於民國六十三年、七十八年陸續成立化學研究所碩士班和博士班。本系教育目標旨在培養化學專業人才與中等學校自然及化學專業師資,授課著重理論及應用性。本系所現有師資為專任教授25人,另外尚有與中央研究院合聘教授3位,在分析、有機、無機及物理化學四個學門的基礎上發展跨領域之教學研究合作計畫。此外,本系另有助教13位,職技員工1位,協助處理一般學生實驗及行政事務。學生方面,大學部現實際共322人,碩士班現實際就學研究生共174人,博士班現實際就學共55人。
本系一向秉持著教學與研究並重,近年來為配合許多研究計畫的需求,研究設備亦不斷的更新。本系所的研究計畫大部分來自國科會的經費補助。此外,本系提供研究生獎助學金,研究生可支領助教獎學金(TA)、研究獎學金(RA)和部分的個別教授所提供的博士班學生獎學金(fellowships)。成績優良的大學部學生也可以申請獎學金。
本校圖書館藏書豐富,除了本部圖書館外,分部理學院圖書館西文藏書現有13萬餘冊,西文期刊合訂本有911餘種期刊,將近約3萬冊。此外,西文現期期刊約450種,涵蓋化學、生化、生物科技、材料及其他科學類等領域。目前本系各研究室連接校園網路,將館藏查詢、圖書流通、期刊目錄轉載等功能,納入圖書館資訊系統中,並提供多種光碟資料庫之檢索及線上資料庫如Science Citation Index,Chemical Citation Index,Chemical Abstracts,Beilstein,MDL資料庫與STICNET全國科技資訊網路之查詢。
News
Browse
Search Results
Item 線上濃縮技術在非水相毛細管電泳與毛細管電泳/表面增強拉曼法上的應用(2007) 蔡志鑫; Chih-Hsin Tsai本研究成功的發展了三種新的毛細管電泳分析技術。首先是成功的開拓了LED (發光二極體)在毛細管電泳分析領域的適用性。這是以市售紫光LED (405 nm) 為螢光激發光源,對血壓平(reserpine)及衍生物進行螢光偵測。使用CZE-stacking濃縮技術偵測極限可達1.6 × 10-8 M。若使用sweeping-MEKC (微胞掃集法)及CSEI-sweep-MEKC (陽離子選擇完全注射掃集MEKC法)濃縮技術時,其偵測極限分別可以達到2.1 × 10-9 M及2.1 × 10-10 M。另外藉由NDA (naphthalene-2,3-dicarboxaldehyde)做為螢光標識試劑,與多巴胺進行衍生反應以後,以螢光偵測結合MEKC及sweeping-MEKC濃縮技術進行測量,其偵測極限可達6.3 × 10-6 M及3.0 × 10-8 M。 其次,本研究首先發展以低溫-非水相毛細管電泳的新方法。對其光學異構物±3,4-methylenedioxymethamphetamine (±3,4-MDMA)可以獲得良好的分離效果。本文詳細探討各種最佳的電泳條件,包括使用各種不同的低溫槽及毛細管內最佳化的高導電度的緩衝溶液。在CZE模式下偵測極限可以達到4.7 × 10-6 M,再結合低溫/非水相堆積線上濃縮技術(LTB/NACZE-stacking),偵測極限更可以達到5.0 × 10-9 M。此外為了增加樣品進樣量以及能夠有更窄的樣品區帶,在樣品區帶和電泳背景溶液之間加入一段高導區帶,造成溶液之間有不同的導電梯度,使得樣品進樣量相對增加。利用這些技術,亦成功的應用在真實樣品3,4-MDMA的分析上。 最後,本研究對於非螢光性物質的偵測,亦成功的發展出新的方法。傳統上毛細管電泳法對非螢光性物質的偵測方法不外乎使用間接法,或是將非螢光性物質加以螢光衍生劑衍生後加以偵測。本研究選用非螢光性物質孔雀石綠為測試樣品,並以波長532 nm 雷射(Nd:YAG的第二倍頻波)為拉曼激發光源。在孔雀石綠定量分析上,以單光器(有效寬度0.4 nm)以及拉曼波數1616 cm-1作為收光範圍。 在毛細電泳/共振拉曼的模式下,孔雀石綠在CZE和MEKC模式下的偵測極限為1.6 × 10-5 M 和 1.1 × 10-5 M。當結合線上濃縮技術stacking及sweeping時,偵測極限可以達到3.4 × 10-7 M和5.3 × 10-9 M。而在毛細電泳/表面增強拉曼模式下,再結合線上濃縮技術stacking及sweeping,偵測極限甚至可以分別高達到4.4 × 10-8 M和1.1 × 10-9 M。本方法亦有效的應用在真實樣品的偵測上。Item 1,3,5-三(苯咪唑-1-基甲基)-2,4,6-三甲基苯配子與過渡性金屬離子自組裝合成、結構與性質探討(2011) 林少軒; Shao-Hsuan Lin本論文主旨為研究1,3,5-tris(benzimidazoyl-1-ylmethyl)-2,4,6 -trimethylbenzene (TBzIm)含羧酸根有機配子與過渡性金屬離子(CoII, ZnII, MnII, NiII)進行水熱自組裝反應,製備金屬-有機配位聚合物(metal–organic coordination polymers)。 本論文共合成八種配位聚合物,分別為4(H3O)+[Zn8(TBzIm)2(btc)4Cl8]•4H2O (1)、[Zn12(TBzIm)2(bdc)4Cl16]•3H2O (2)、[Co4(TBzIm)4(Hbtc)4] (3)、[Co2(TBzIm)2(bdc)2]•3H2O (4)、[Mn5Cl10(TBzIm)4]•1acetone (5)、[Co2(Fum)2(TBzIm)2]n (6) 、[Ni2(Fum)2(TBzIm)2]n (7)和[Co12(TBzIm)4(D-Cam)12] (8)。論文分成三部分探討,第一部分 (化合物1-4) 為經由柔性TBzIm搭配二價鋅金屬離子(ZnII) 或二價鈷金屬離子(CoII),並混合剛性均苯三甲酸(trimesic acid, H3Btc)、對苯二甲酸(terephthalic acid, H2Bdc)之含羧酸根有機配子進行水熱自組裝反應,形成二維或三維的金屬-有機配位聚合物;第二部分(化合物5)為經由TBzIm與二價錳金屬離子(MnII)進行水熱自組裝反應,形成三維金屬-有機配位子結構,該化合物顯現特殊之磁性行為;第三部分 (化合物6-8) 為經由TBzIm搭配二價鈷金屬離子(CoII)或二價鎳金屬離子(NiII),混合天冬胺酸(aspartic acid, Asp)、酒石酸(tartaric acid, Tar)、樟腦酸(camphanic acid, D-cam)等天然含羧酸根有機配子進行水熱自組裝反應,形成掌性金屬-有機配位聚合物。 第一部分的研究中,化合物1-3為二維層狀結構、化合物4為三維網狀結構,TBzIm與剛性含羧酸根有機配位子之立體阻障在結構的自組裝形成過程中,扮演相當重要的角色。第二部分之化合物5為三維網狀結構,由五個二價錳金屬離子(MnII)所形成的金屬中心展現出有趣地反鐵磁性(antiferromagnetic)行為,基態等於S = 15/2,甚為少見。第三部分的研究中,化合物6與7為等結構(isostructure),具掌性之螺旋型超分子結構,在水熱法的過程中天冬胺酸經由原位反應(in-situ reaction)轉換為反丁烯二酸(fumaric acid)。有趣的是若與直接使用反丁烯二酸進行化合物6與7的合成,則產率顯著降低;化合物8則為含有槳舵形(paddle wheel)進構單元(SBU)的掌性超分子結構。在本論文中,由TBzIm所合成的八種配位聚合物皆展現出良好的熱穩定性,其中以化合物3與8最為穩定,耐熱溫度可達480°C。Item 旋轉異構物3,4-二氟苯酚及2,5-二氟苯酚之質量解析臨界游離光譜研究(2014) 蔡青妘; Ching Yun Tsai本實驗使用單色共振雙光子游離光譜術、雙色共振雙光子游離光譜術以及質量解析臨界游離光譜術來探討3,4-二氟苯酚以及2,5-二氟苯酚的分子特性,並且利用上述的光譜術去獲得此分子的第一電子激發態能量、游離能以及經由第一電子激發態和離子態的振動光譜。因為3,4-二氟苯酚以及2,5-二氟苯酚這兩個分子皆具有兩種不同的旋轉異構物,分別為順式3,4-二氟苯酚和反式3,4-二氟苯酚以及順式2,5-二氟苯酚和反式2,5-二氟苯酚。順式3,4-二氟苯酚和反式3,4-二氟苯酚所獲得的躍遷能和游離能分別是35 486 ± 2和35 704 ± 2 cm-1以及70 016 ± 5 和70 203 ± 5 cm-1;而順式2,5-二氟苯酚和反式2,5-二氟苯酚的躍遷能和游離能分別為36 448 ± 2和36 743 ± 2 cm-1以及71 164 ± 5和71 476 ± 5 cm-1。我們可以觀察到在反式結構中,其躍遷能和游離能都略高於順式的結構。經由光譜分析所獲得的結果顯示出造成此結果的原因為平面運動苯環的變形和取代基彼此互相作用有關。綜合三種光譜術所獲得的光譜分析,可得到一個結論,在順式和反式的旋轉異構物中,不管是利用在電子激發的中性物種或是在陽離子基態,其分子的幾何形狀和振動座標都是相似的。Item 2-鹵-N-取代苯甲醯胺及N-取代胼合成氮、氧雜環化合物的探討(2016) 柯帝; TRIMURTULU KOTIPALLI本論文主要可分為兩個章節,第一章可被細分為四個部分,A部分是回顧2-鹵代-N-取代基苯甲醯胺衍生物合成以及配位體促使金屬催化反應或無金屬催化反應等相關報導。B部分探討由簡單易取得的2-碘-N-取代基苯甲醯胺與吲哚衍生物合成出吲哚並[1,2-a]喹唑啉衍生物,反應過程由兩步驟構成,第一步利用2-碘苯甲醯胺衍生物經由烏耳曼反應進行吲哚芳香化反應,第二步則在鈀試劑的催化下進行分子內碳-氫醯胺化,此方法提供一個簡單便利的途徑合成出吲哚並[1,2-a]喹唑啉衍生物。C部分是藉由三氟化硼乙醚作為試劑進行一鍋化環擴張以及碳-碳鍵生成反應合成出10-吲哚基苯並[b,f]氮䓬之衍生物,並適用於多種不同取代基且產率也有不錯的表現。D部分介紹以銅試劑催化2-碘苯甲醯胺衍生物與 多種苯胺、烯丙基胺、肉桂胺等衍生物進行烏耳曼反應,接續分子內碳-氫醯胺化反應合成喹唑啉衍生物。 第二章細分為兩部分,A部分是回顧1,3,4-惡二唑衍生物及1,2,4-三唑衍生物合成的相關文獻報導。B部分介紹一種新穎的方法:利用聯氨前驅物、三氟甲磺酸酐以及2氟吡啶 /吡啶合成出 1,3,4-惡二唑衍生物、1,3,4-惡二唑啉衍生物以及1,2,4-三唑衍生物,我們設計出具位向選擇性開關的取代基/試劑去合成惡二唑啉衍生物(2氟吡啶作為反應物 )、惡二唑衍生物與三唑衍生物( 吡啶作為鹼添加物 ),另外2氟吡啶與 三氟甲磺酸酐開啟一新的活化模式合成出環戊-2,4-二烯衍生物,也就是類似Zincke反應中的 吡啶 環裂解 。Item 三取代基苯衍生物3,5-二氟苯酚之第一電子激態暨離子態振動光譜(2016) 彭威智; Peng, Wei-Chih本論文研究著重於探討3,5二氟苯酚的特性,所使用的實驗技術包括單色共振雙光子游離(1C-R2PI)光譜術、雙色共振雙光子游離(2C-R2PI)光譜術和質量臨界游離(MATI)光譜術,利用以上技術可得知分子的第一電子激發能量、絕熱游離能和電子激發態與離子態分子振動光譜。本次的實驗,我們使用單光共振雙光子游離術精準地測量出3,5二氟苯酚的第一激發態能量為 37 614 ± 2 cm-1 且第一激發態的分子振動光譜訊雜比非常良好,可以很明顯地分辨出是否為真實訊號及雜訊。擁有完整的第一激發態資訊後我們利用質量臨界游離光譜術以S100、S110b1、S19b1為中間態得到準確的絕熱游離能 72 468 ± 5 cm-1 以及離子態分子振動光譜。而在數據分析上,我們參考Varsanyi所著的Assignments for Vibrational Spectra of Seven Hundred Benzene Derivatives書中所列的實驗數據再搭配理論計算所得的結果做譜線標定。相較於實驗室之前所測量的二氟苯酚的位置同分異構物, 3,5-二氟苯酚的第一激發能與游離能都為最高。除了電子躍遷能和電子激發態與離子態分子振動的討論之外,我們也會利用量子化學計算探討3,5-二氟苯酚在基態(S0)、第一激發態(S1)與游離態(D0)時的結構變化,發現在電子躍遷時苯環的結構發生改變,此結果與實驗所見到的現象符合。Item 有機催化連鎖反應合成全取代2,3,4,5-四氫-1H-茚[1,2-b]吡啶-5-酮化合物(2015) 張芸毓; Chang, Yun-Yu近年來,已有許多針對茚[1,2-b]吡啶-5-酮單元分子的相關合成方法陸續被發表,因其芳香結構之組成,不具有鏡像性質,在天然物合成及衍生藥物的製備上,欠缺應用價值;因此,合成具有高立體選擇性的全取代2,3,4,5-四氫-1H-茚[1,2-b]吡啶-5-酮化合物為重要的研究目標之一。本實驗使用新開發的外消旋硝基烯丙胺及1,3-氫茚二酮作為起始物,依序添加20 mol%的1,4-二氮雜二環[2.2.2]辛烷與50 mol%對甲苯磺酸,作為布忍斯特酸鹼進行共催化,四氫呋喃為溶劑,於0 oC的條件下,進行連鎖Michael/aza-環化反應,得到具有優異非鏡像選擇性(up to 96:4 d.r.)之全取代2,3,4,5-四氫-1H-茚[1,2-b]吡啶-5-酮化合物,產率方面亦有良好的表現(38-73%);此外,在此化合物分子中具有多重官能基,透過後續反應之修飾,期望此合成路徑得以應用在往後的相關天然物合成中。