化學系
Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/57
國立臺灣師範大學化學系座落於公館校區理學院大樓。本系成立於民國五十一年,最初僅設大學部。之後於民國六十三年、七十八年陸續成立化學研究所碩士班和博士班。本系教育目標旨在培養化學專業人才與中等學校自然及化學專業師資,授課著重理論及應用性。本系所現有師資為專任教授25人,另外尚有與中央研究院合聘教授3位,在分析、有機、無機及物理化學四個學門的基礎上發展跨領域之教學研究合作計畫。此外,本系另有助教13位,職技員工1位,協助處理一般學生實驗及行政事務。學生方面,大學部現實際共322人,碩士班現實際就學研究生共174人,博士班現實際就學共55人。
本系一向秉持著教學與研究並重,近年來為配合許多研究計畫的需求,研究設備亦不斷的更新。本系所的研究計畫大部分來自國科會的經費補助。此外,本系提供研究生獎助學金,研究生可支領助教獎學金(TA)、研究獎學金(RA)和部分的個別教授所提供的博士班學生獎學金(fellowships)。成績優良的大學部學生也可以申請獎學金。
本校圖書館藏書豐富,除了本部圖書館外,分部理學院圖書館西文藏書現有13萬餘冊,西文期刊合訂本有911餘種期刊,將近約3萬冊。此外,西文現期期刊約450種,涵蓋化學、生化、生物科技、材料及其他科學類等領域。目前本系各研究室連接校園網路,將館藏查詢、圖書流通、期刊目錄轉載等功能,納入圖書館資訊系統中,並提供多種光碟資料庫之檢索及線上資料庫如Science Citation Index,Chemical Citation Index,Chemical Abstracts,Beilstein,MDL資料庫與STICNET全國科技資訊網路之查詢。
News
Browse
Search Results
Item 鉑錫合金奈米棒觸媒之氧化程度對直接甲醇燃料電池的電化學催化效果研究(2022) 李鑑鈞; Li, Chien-Chun直接甲醇燃料電池(DMFCs)是透過將甲醇燃料以化學能形式直接轉換成電能的一種電池,其可攜帶性使之成為極具發展潛力的供電裝置。在此研究中分別藉由實驗與理論計算兩個面向來檢定DMFCs中的甲醇氧化反應(MOR),並通過此研究揭示將Pt與具高度親氧性Sn進行氧化後,其對陽極觸媒PtSn所造成的重要影響。關於實驗部分,原先的Pt3Sn nanorods(NRs)是透過甲酸還原法所合成,隨後透過改變不同溫度(150, 200, 250與300oC)與加溫時間(1, 1.5, 3與5 hr)的氧化後處理過程進行各式樣品的製備。其中經由不同的氧化條件所得到的PtSn NRs氧化程度皆不盡相同,所以藉HRTEM, XRD, EDX, XPS對觸媒的表徵進行鑑定,並由電化學測試瞭解其MOR的催化能力。透過實驗的結果可以發現,當Pt3Sn NRs在經過200oC加熱氧化三小時的條件下擁有約54 %的表面氧化度,也具備最為優異的MOR活性與觸媒穩定性。計算的部分則分別探討甲醇在乾淨與經過氧化(表面具有氧原子吸附)的Pt表面、NR模型的脫氫反應及氧化反應。由結果顯示出,無論是乾淨的Pt表面亦或是NR,(100)面皆擁有較低的脫氫反應能與反應能障。之於經過氧化的表面,(100)面的氧化反應可以得到更進一步的提升。NR則因為同時具備(100)與(111)表面,且在side位點擁有最穩定的氧吸附。因此亦如實驗的結果,其將展現最優異的MOR催化活性與觸媒穩定性。Item 新穎能源材料之第一原理計算模擬與研究(2020) 劉啟佑; Liu, Chi-You為了降低石化燃料的使用,科學家們一直致力於尋找乾淨的替代能源,希望在未來使用液態或固態形式的能源。與此同時,也需要發展安全又具經濟效益的新能源儲存系統,最終的目標是尋找具有高能源密度、容易儲存及運輸、並且更為永續的能源。在本論文當中使用了計算化學的方法,在奈米至原子尺度下,藉由電子結構、催化性質和化學反應機構的探討,來改善並發展新的能源材料。總和來說,我們基於第一原理方法的理論模擬,針對不同能源與能源儲存系統的材料表面進行研究,包含了直接甲醇燃料電池(Direct methanol fuel cell, DMFC)、鋰硫(Li-S)電池、質子交換膜燃料電池(Proton exchange membrane fuel cell, PEMFC)和費托合成反應(Fischer-Tropsch synthesis, FTS)等領域。各部分詳細的介紹如下: 第一部份:直接甲醇燃料電池內一氧化碳移除反應在鉑修飾多氧陽極表面(Pt2/o-MO2(110), M = Ru及Ir)的研究 在第三章中將針對液態的直接甲醇燃料電池(DMFC)進行討論。DMFC反應過程中產生的CO或其他碳氫化合物(CmHn)很容易就毒化Pt金屬陽極表面。我們研究CO及H2O於乾淨Pt2/MO2(110)以及多氧Pt2/o-MO2(110)表面(M = Ru及Ir)上的吸附現象。結果顯示使用多氧的表面能夠有效的降低CO及H2O的吸附能,並且讓CO與表面的OH基團以更低的活化能進行類水氣轉換(WGS-like)反應,減緩CO毒化的現象。 第二部分:鋰硫電池中含鋰多硫化物在石墨稀基底材料上的吸附結構研究分析 第四章我們則針對鋰硫(Li-S)二次電池進行研究。近期的文獻顯示,若在陰陽極中間放置以碳為基底的材料做為中間層(interlayer),能夠有效改善含鋰多硫化物(LiPSs)的飛梭現象並增加電池壽命。我們建構了不同結構形式的異原子(N或S)取代的石墨稀表面,發現當使用含鋰的N及S共同取代石墨稀表面做為鋰硫電池中間層時,能夠讓LiPSs以完整吸附機制吸附,有效的減緩飛梭現象。 第三部分:Pt/v-Tin+1CnT2二維材料表面邊界性質對氧氣還原反應催化的影響 第五章中探討了質子交換膜燃料電池(PEMFC)的陰極氧氣還原反應(ORR),當使用二維Tin+1CnT2與Pt/v-Tin+1CnT2 (n = 1 ~ 3, T = O and/or F)的材料時,不同取代基對於ORR反應過電壓η的影響。我們的結果顯示F的取代基在表面上鍵結較弱且較不穩定,與實驗上觀察到脫附或被取代的現象符合。但由於F取代基在表面上時,內層的Ti與C具有較高的共價性,有利於吸附物吸附並反應,導致使用含有F取代基的表面進行ORR時可以得到較低的過電壓η。 第四部份:利用雙金屬中心的CNT基底材料促進費托合成中C-C成鍵反應 在費托合成(FTS)中,C-C成鍵的效率是最重要的因素。在第六章中我們模擬了雙金屬中心的M1M2/N6h-CNT (M = Fe, Co, and Mn)表面,分析其電子結構及催化活性,並考慮了三種能夠增長碳鏈長度的C-C成鍵反應:[CO + CH3]、[CO + CH2]和[CH2 + CH2]。結果顯示,CH2單體在2Co/N6h和CoMn/N6h表面上能經由一個近乎為零的活化能,順利進行C-C成鍵反應。整體來說,我們分析了雙金屬中心的系統對於在FTS中增加CO轉換率並降低C1產物比例的可行性。Item 以理論計算方法探討CO在Cu(711)表面上的電化學還原(2019) 辜敏韶; KU, Min-Shao在現今社會中,使用銅做為電催化電極是現今將二氧化碳電還原成許多有用的燃料的其中一項主要方法。透過製備不同的銅電極材料表面來區分各種催化途徑成為CO2電還原化學最關注的主題之一;而催化體系設計的成功與否,取決於是否提高還原CO2的選擇性。利用理論計算,我們研究Cu(711)表面,以了解早期實驗觀察所顯示的C-C耦合的有趣選擇性。通過分析沿著CO2還原機理的各種關鍵中間體的電子結構,可以為設計用於Cn(n≥2)烴合成的Cu電極材料的新形態提供進一步的見解。Item 以理論計算探討奈米鐵銠團簇催化劑調控費托反應的產物選擇性研究(2020) 許合良; Hsu, Ho-Liang本篇藉由密度泛函理論探討奈米複合材料中鐵銠參雜比例對於費托合成反應選擇性的影響。我們以 FenRh(13-n), n=1, 2, 6, 11, 12 奈米團簇為模型分別探討二氧化碳於團簇上的碳-氧鍵斷鍵反應與一氧化碳於團簇上的氫化還原和碳-氧鍵斷鍵反應。我們發現Fe6Rh7、Fe11Rh2 和 Fe12Rh1 奈米團簇不僅對二氧化碳的碳-氧鍵斷鍵具有良好的催化效果,當一氧化碳氫化還原成 CH2O 之後,其對 CH2O 的碳-氧鍵斷鍵也有良好的催化能力。藉由分析 CH2O 的吸附結構,我們發現 CH2O 的氧原子吸附於 Fe6Rh7、Fe11Rh2 和 Fe12Rh1 奈米團簇中三鐵構型的橋位。自然鍵軌域 (natural bond orbital, NBO) 電荷分析與鍵長分析顯示當 CH2O 的氧原子接於三鐵構型的橋位時,奈米團簇有較多電子移轉至 CH2O 的碳原子和氧原子上,導致 CH2O 分子的碳-氧鍵鍵長變長而有預斷鍵的情形,進而造成 C-O 斷鍵活化能下降。另外,CH2O 分子解離而生成 CH2 和 O 後,氧原子會落入三鐵構型的中心並藉由鐵-氧之間的作用而被穩定,使得 CH2 和 O 的生成能下降。Item 以理論計算探討以金屬為基材的單原子催化劑上進行二氧化碳電化學還原成乙醇的反應機制(2020) 鄭博修; Bo-Siou Zheng使用過渡金屬可以改善二氧化碳還原反應的效率,及能將二氧化碳轉換成更有價值的產物,因為唯獨銅元素具有產生多碳產物的優點,所以被廣泛運用在二氧化碳還原反應上,2011年,Zheng教授的團隊成功合成出單金屬原子催化劑(Pt1/FeOx),並在一氧化碳的氧化反應中展現不錯的催化效果,最近,有實驗團隊使用此合成策略於二氧化碳還原反應中,發現在”以部分氧化的鈀金屬為基材的單顆銅金屬原子催化劑”上對於乙醇有高度的選擇性,所以我們將透過模擬該系統在進行二氧化碳還原的反應產生乙醇的反應路徑。 鈀金屬在二氧化碳還原的反應上對於探討產生CO具有選擇性,因此二氧化碳會先經過鈀基材還原成一氧化碳,隨後轉移至銅原子周圍進行 “氫化”及“碳-碳耦合”的動作。而最終的實驗結果顯示,在(100)系統中碳碳耦合的速率決定步驟是, COH與CHO在Pd與Cu的交界處進行耦合;而(111)系統中碳碳耦合的速率決定步驟是,CO及CHO直接在銅原子上方進行耦合的步驟。Item 氣相層析儀結合微型發音哨對氣體分析的開發與研究(2014) 賀怡珊; Yi-San He本研究利用微型哨式發音器(milli-whistle)結合氣相層析儀(gas chromatography, GC),並使用麥克風為偵測器,將毛細管柱之載流氣體與外加輔助的鞘流氣體混合後,偵測混合氣流以受迫性的高速通過哨式發音器時的單頻聲音。此時,聲音藉由麥克風接收並同步以 LabVIEW (Laboratory Virtual Instrument Engineering Workbench)程式進行快速傅立葉轉換(fast Fourier transform, FFT),獲得即時聲音頻率,並探究頻率變化與分子量大小等對頻率影響的公式計算和探討。在最佳化實驗條件下頻率訊號半高寬約為 1.6 Hz,並以層析時間與即時發音哨之頻率作圖,即得氣相層析譜圖。與實驗結果比對後,發現不僅能成功地驗證理論推導公式,更可以應用在各式氣體樣品之中。透過本研究開發之理論公式可推估氣體樣品含有的氣體組成成分及含量,搭配分析物的滯留時間與頻率訊號的檢量線驗算,將能更精確地進行樣品的定性和定量研究。本研究進行檢測健康人體志願者之呼氣中含二氧化碳/氧氣比例、固相微萃取法(solid-phase microextraction, SPME)檢驗丙酮蒸氣的含量,以及硼烷氨類釋氫量與金屬酵素(metalloenzyme)釋氫量的理論計算,都得到與實際值或理論值相近的計算結果。此外,哨式發音器的製作有許多方法,本研究也比較了各種不同的構型,發現對於哨式發音器的感度和發聲頻率有很大的影響。Item 以理論計算探討:I.氮氧化物在鎳(111)表面的反應機構II.一氧化氮在鎳-鉑雙金屬的分解反應III.二氧化碳在碳化鎢與碳化鎢-鈷合金表面反應探討(2012) 吳亘曜; Wu, shiuan-yau摘 要 第一部分 :氮氧化物(NOx)在Ni(111)表面的反應機構之探討 利用空間週期性來探討不同的氮氧化物(包含NO、NO2和N2O)在Ni(111)表面的反應機構,進一步討論到不同的覆蓋率下可能的變化。其中,在覆蓋率小的情況下,吸附的分子無論是NO、NO2和N2O都會完全分解成吸附態的N和O原子,而克服了2.34 eV的活化能之後,表面的N原子會再結合成N2分子從表面脫附。但是當覆蓋率不斷的提升之後,還沒有完全分解的NO和表面的N 原子會進行再結合,在高覆蓋率的情況下,N2O可能會進行脫附或者進一步斷N-O鍵形成N2分子。而在高覆蓋率的情況下會有N2O的副產物也可以從實驗的觀察得到證實。 第二部分: 一氧化氮(NO)在鎳-鉑雙金屬表面分解反應的探討 利用空間週期性來探討一氧化氮在Ni-Pt雙金屬表面的吸附與分解反應。其中,我們利用到的Ni-Pt雙金屬表面有: xNi@Pt(111), NixPt4-x(111), 和(4–x)Pt@Ni(111) ( x = 0~4)。 在所有的雙金屬表面當中,NO傾向被吸附在表面上有較多Ni原子的位置,而吸附能會隨著表面上Ni原子的數量增加而上升。另外,在我們所探討的所有雙金屬組成當中,當出現了表層的組成相同而內層不同的情況下,依不同的內層,NO分子吸附能的順序依次為xNi@Pt(111) > NixPt4-x(111) > (4 – x) Pt@Ni(111)表面,而NO斷鍵所需的活化能則剛好相反,換言之,在我們所有的表面當中,吸附能越大,斷NO鍵所需要的能障就越小。另外,我們也利用了局部電子態密度的分析來探討不同內層組成所造成雙金屬效益的原因。 第三部分:二氧化碳在碳化鎢WC(0001)和碳化鎢-鈷合金WC-Co表面反應探討 利用空間週期性探討二氧化碳在碳化鎢(0001)和碳化鎢-鈷合金表面的吸附。並進一步探討在不同鎢鈷比例的情況下,二氧化碳分解與氫化的趨勢。其中,碳化鎢(0001)表面有明顯的局域化現象,而當表面的組成結構改變,伴隨鈷原子的比例增加,會改變表面的局域化情形,進一步影響到吸附與反應的趨勢。而當鈷的覆蓋率為0.25ML的情況下,二氧化碳在WC-Co(0.25ML)有最佳的吸附能,而當鈷的覆蓋率增加到0.50ML,二氧化碳的吸附能雖然略減,但在該表面有最小的分解活化能。而氫化反應的活化能則是隨著表面鈷原子的比例增加而遞減,顯示鈷原子對氫化反應的幫助。而在這個部分,我們利用了電子局域化函數分析來探討表面局域化情況對二氧化碳催化反應的影響。Item 含十六族元素之異核金屬羰基團簇物:合成與電化學和電子吸收光譜以及理論計算探討(2011) 繆佳曄1. E/Mn/Cr/CO (E = S, Se) 系統之研究 當[PPN][E2Mn3(CO)9] (E = S, Se)、Cr(CO)6和PPNCl以莫耳比1:1:2或1:2:2於混合乙腈及甲醇之鹼性溶液(4M)中反應,可得到含hydride之混合錳鉻化合物[PPN]2[HE2Mn3Cr(CO)14] (E = S, [PPN]2[1a]; Se, [PPN]2[1b])。然而,起始物之陽離子來源為TMBA時,進而加入Cr(CO)6以莫耳比1:1於鹼性甲醇溶液(4M)中加熱迴流反應,可獲得八面體結構之混合錳鉻團簇物[TMBA]3[E2Mn3Cr(CO)12] (E = S, [TMBA]3[2a]; Se, [TMBA]3[2b])。化合物1a和1b亦可於鹼性甲醇溶液中加熱迴流並進行合環反應而轉變成化合物2a和2b。此外,若化合物1a和1b加入一或兩當量Cr(CO)6於二氯甲烷溶液中加熱迴流反應,則可進行擴核反應而得到含hydride之混合錳鉻化合物[HE2Mn3Cr2(CO)19]2─ (E = S, 3a; Se, 3b)。其化合物生成及相關性質、結構轉換以及電化學性質藉由理論計算進一步驗證。 2. E/Mn/Ru/CO (E = S, Se) 系統之研究 當[PPN][E2Mn3(CO)9] (E = S, Se)與Ru3(CO)12以莫耳比1:1於混合乙腈及甲醇溶液中加熱迴流反應,可得到八面體結構之同核含釕團簇物[HE2Ru4(CO)10]− (E = S, 3a; Se, 3b)和異核含混合錳釕團簇物[E2Mn2Ru2(CO)11]2− (E = S, 4a; Se, 4b)。此外,化合物4a和4b相較於等電子的八面體結構之同核含錳團簇物[E2Mn4(CO)12]2− (E = S, 1a; Se, 1b)和異核含混合錳鉻團簇物[E2Mn3Cr(CO)12]3− (E = S, 2a; Se, 2b)具有良好電子傳遞行為,其氧化位置發生在雙錳金屬羰基片段。紫外可見光吸收光譜顯示此系列同核及異核化合物之電子躍遷為MLCT (Mn→E or COs)或混合MLCT及MMCT (Mn→Cr or Ru)特性,並藉由反射光譜得知此系列化合物其能隙介於1.25至1.80 eV。其化合物生成及相關性質、電子吸收以及電化學性質藉由理論計算進一步驗證。 3. Te/Ru/Cu/CO 系統之研究 當[PPh4]2[TeRu5(CO)14]加入一當量[Cu(MeCN)4][BF4]於二氯甲烷溶液及低溫下反應,可得到三銅橋接之雙八面體結構的團簇物[PPh4]2[{TeRu5(CO)14}2Cu3Cl] ([PPh4]2[1])。若將上述反應之[Cu(MeCN)4][BF4]提高至兩當量,可獲得四銅橋接之雙八面體結構團簇物[PPh4]2[{TeRu5(CO)14}2Cu4Cl2]∙CH2Cl2 ([PPh4]2[2]∙CH2Cl2)和雙銅蓋接之八面體結構團簇物[TeRu5(-CO)2(CO)12Cu2(MeCN)2] (3a);然而,此反應若於室溫下進行,則可獲得化合物2以及化合物3a之結構異構物[TeRu5(-CO)3(CO)11Cu2(MeCN)2] (3b)。此外,化合物1和2的生成反應涉及二氯甲烷之碳氯鍵活化,而化合物3a和3b的生成是藉由反應溫度控制。化合物1─3的生成及相關性質、結構轉換、電子吸收以及電化學性質藉由理論計算進一步驗證。 4. Te/Fe/Cu/dipyridyl 系統之研究 當[TeFe3(CO)9{Cu(MeCN)}2]與不同有機含氮配子依劑量莫耳比於四氫呋喃溶液中反應,可獲得一維或二維含有機配子之混合鐵銅羰基的有機金屬-有機混合之配位聚合物1─4。此外,利用一鍋化方式將[TeFe3(CO)9]2─、[Cu(MeCN)4][BF4]與有機配子H2bpe or tmdpy於四氫呋喃溶液中反應,可得到聚合物3和4其結構中的陰離子之混合鐵銅團簇物[{TeFe3(CO)9Cu}2L]2─ (L = H2bpe, 5; tmdpy, 6)。化合物1─6之生成及相關性質、電子吸收以及導電性藉由理論計算進一步驗證。 關鍵字:第十六族元素、異核金屬、團簇物、電化學、電子吸收光譜、理論計算Item 利用理論計算探討電催化還原二氧化碳的反應機制(2012) 李子翊; Zi-Yi LiRuII(bpy)(trpy)(CO), bpy = 2,2'-Bipyridine, trpy = 2,2':6',2”-terpyridine, 這個錯合物是少數能夠將二氧化碳直接還原成甲醇的有機錯金屬錯合物,這個錯合物曾經被報導可以在通入-1.5V的電壓環境下,生成甲醇和碳碳鍵生成的產物,利用此催化劑還原二氧化碳的產物包括了CO、HCOOH、CH3OH、HC(O)H、H(O)CCOOH以及HOCH2COOH,而第一個推測這個催化反應的反應機制是Tanaka,但是這個催化反應的各種中間產物的詳細資訊,不管是在實驗或是理論計算中都還是不清楚的。 在目前的研究利用理論計算的方法來分析這個反應機制,包括利用還原電位,pKa以及自由能來更完善Tanaka所預測的反應機制,並探討其反應的可行性。 關鍵字: 二氧化碳,理論計算,電催化,反應機構Item 含鉍之 (鉻、鐵) 金屬團簇化合物的合成、轉換關係、化性、物性與理論計算之探討(2015) 邢凱捷; Kai-Jieah Hsing當開放型四面體化合物 [Bi{Cr(CO)5}4]3– 與 2 當量的 [Cu(MeCN)4][BF4] 試劑於 MeCN 中反應,可生成平面三角形化合物 [Bi{Cr(CO)5}3]– (1);反之,1 可藉由與 2 當量 [HCr(CO)5]– 逆反應得 [Bi{Cr(CO)5}4]3–。X-ray 結構解析發現化合物 1 為以鉍原子為中心鍵結三個 [Cr(CO)5] 片斷的平面三角形之構型;特別的是,化合物 1 具有不飽和之 電子系統。有鑑於此,將 1 分別與 KX (X = Cl, Br, I, OH) 於 MeCN 或 THF 中反應,可生成鹵素或羥基加成之四面體化合物 [XBi{Cr(CO)5}3]2– (X = Cl, 2-Cl; Br, 2-Br; I, 2-I; OH, 3);其中,當 2-I 與 AgNO3 反應時,可逆反應形成 1。若進一步將 1 與 Fe(CO)5 於鹼性甲醇溶液反應,可生成罕見混合鉻與鐵之四面體化合物 [Bi{Cr(CO)5}3{Fe(CO)4}]3– (4)。特別的是,化合物 1 具有溶劑化顯色 (Solvatochromism) 之特性,當其分別溶於 DMF、MeCN、Acetone、MeOH、THF、EtOH 與 CH2Cl2 時,溶液所呈現的顏色依序為紅、橘紅、橘黃、黃、草綠、碧綠與孔雀綠。本研究藉由偵測此一系列化合物之電化學、液態紫外/可見光光譜與反射式固態紫外光譜來探討引入不同鹵素與異核金屬的效應,並搭配理論計算來佐證。
- «
- 1 (current)
- 2
- 3
- »