化學系

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/57

國立臺灣師範大學化學系座落於公館校區理學院大樓。本系成立於民國五十一年,最初僅設大學部。之後於民國六十三年、七十八年陸續成立化學研究所碩士班和博士班。本系教育目標旨在培養化學專業人才與中等學校自然及化學專業師資,授課著重理論及應用性。本系所現有師資為專任教授25人,另外尚有與中央研究院合聘教授3位,在分析、有機、無機及物理化學四個學門的基礎上發展跨領域之教學研究合作計畫。此外,本系另有助教13位,職技員工1位,協助處理一般學生實驗及行政事務。學生方面,大學部現實際共322人,碩士班現實際就學研究生共174人,博士班現實際就學共55人。

本系一向秉持著教學與研究並重,近年來為配合許多研究計畫的需求,研究設備亦不斷的更新。本系所的研究計畫大部分來自國科會的經費補助。此外,本系提供研究生獎助學金,研究生可支領助教獎學金(TA)、研究獎學金(RA)和部分的個別教授所提供的博士班學生獎學金(fellowships)。成績優良的大學部學生也可以申請獎學金。

本校圖書館藏書豐富,除了本部圖書館外,分部理學院圖書館西文藏書現有13萬餘冊,西文期刊合訂本有911餘種期刊,將近約3萬冊。此外,西文現期期刊約450種,涵蓋化學、生化、生物科技、材料及其他科學類等領域。目前本系各研究室連接校園網路,將館藏查詢、圖書流通、期刊目錄轉載等功能,納入圖書館資訊系統中,並提供多種光碟資料庫之檢索及線上資料庫如Science Citation Index,Chemical Citation Index,Chemical Abstracts,Beilstein,MDL資料庫與STICNET全國科技資訊網路之查詢。

News

Browse

Search Results

Now showing 1 - 6 of 6
  • Item
    深度學習模型Schnet的分析、簡化與改進方法探討
    (2022) 洪聖軒; Hung, Sheng-Hsuan
    在深度學習應用化學領域的研究中,以對分子特定性質的高準確度、低計算成本預測的研究一直是具有高關注度的研究方向。在本研究中所使用的Schnet便是對此研究方向提出的一個相對成熟的深度學習模型,具有能預測QM9數據集中分子包含HOMO能量 (EH)、LUMO能量 (EL)以及兩者能量差距(EG)在內的性質平均絕對誤差達到接近或小於1 kcal/mol的準確度,並且其計算成本遠低於經典的DFT計算。針對Schnet的優秀預測效果,本研究對於其架構的主要部分進行分析,得到類似於誘導效應的資料關聯。之後,利用QM9數據集中的所具有的分子SMILES,產生鍵步資訊並替換Schnet架構中的一部份以達成輸入資訊的簡化,最終獲得了與原始Schnet相比大約1-2倍左右的平均絕對誤差。在架構的更改上,進一步利用來自Deep4Chem的分子數據集來測試Schnet經過簡化之後的架構其預測螢光放光波長、吸光波長以及量子產率的能力,然後再外加一層用以對分子環境不同作為標示的嵌入層,將分子環境的資訊輸入模型中,以獲得更好的預測結果。在對Schnet模型的後續改進中,對Deep4Chem分子數據集中的螢光分子之吸光與放光波長的預測,其平均絕對誤差達到了0.131 eV與0.087 eV;而在Schnet中加入一層嵌入層之後,對吸光與放光波長的預測之平均絕對誤差則被降低到了0.083 eV與0.082 eV。在預測量子產率的表現上,兩種模型分別的平均絕對誤差為0.336與0.292。
  • Item
    以機器學習方法預測溶劑對其有機螢光分子之放光波長
    (2023) 董景華; Tung, Ching-Hua
    在19、20世紀,定量構效關係之方法逐漸發展,以機器學習方法對於預測化學分子的生物活性、藥物性質等的研究也與日俱增。許多軟體可以用於計算分子描述符,描述符為用於表示分子的物理化學性質。透過機器學習方法,我們可以預測有機螢光分子之放光波長,對於不同分子描述符以及溶劑效應之影響。本研究中,為使用SKlearn作為機器學習的方法。並使用線性迴歸、LASSO、隨機森林三種不同的迴歸方法訓練模型,且搭配K-means分群法及聚合階層式分群法來探討其模型訓練之表現。對於11146種SMILES分子,加入8種溶劑描述符後,以隨機森林迴歸方法進行模型訓練,或基於K-means分群及LASSO迴歸方法進行隨機森林迴歸方法之模型訓練,亦或是基於沃德法及LASSO迴歸方法進行隨機森林迴歸方法之模型訓練。其R^2分別有0.01至0.02的不等提升,且分別在各模型之重要性特徵,8種溶劑描述符有包含在其中,且有與共軛π鍵相關的描述符,對於預測放光波長有顯著的貢獻,與參考文獻結果具一致的解釋性。
  • Item
    基於機器學習預測有機分子之最高佔據分子軌域與最低未佔據分子軌域及其能隙
    (2023) 蘇柏豪; Sue, Bo-Hao
    近年來科技發展迅速,以大數據的電腦模擬研究也跟著興起,利用機器學習的方式透過演算法來精準預測結果,並輔佐實驗進展,從中尋找出新的可能性已然是種趨勢,而傳統的量化計算耗時長,成本相對高,且只能做少量的分子。HOMO、LUMO和Energy gap性質用於化學領域中,因其放光波長、電子傳遞、化學反應性等特性,廣泛應用於有機化學,本研究基於上述問題,使用了機器學習中的分群法、線性及非線性回歸的方式建立模型,逐步針對大量種類的有機化合物進行分析與探討。本研究利用機器學習中的Lasso回歸、K-means分群法、隨機森林演算法,用於預測114896種有機化學分子的HOMO、LUMO和能隙(Energy gap)性質,透過本研究之模型,得出:HOMO、LUMO、Energy gap的理論與預測值之MAE小於 0.3 eV,並且非線性回歸模型之校正R2值大於 0.93,顯示模型預測結果高度符合吾人預期之化學性質。透過本研究之分析結果,顯示本研究所建立之模型,除了有著良好的預測效果,其篩選出來的描述特徵與一般化學界的認知相吻合,未來可期運用本研究之相關概念與分析方法,對相關領域之數值分析有所貢獻。
  • Item
    機器學習方法預測 數千種有機螢光團的放射波長
    (2019) 葉宗融; Ye, Zong-Rong
    在過去70年中,螢光分子已廣泛應用於各種領域,如螢光紡織品,螢光油墨和螢光塑料產品。 有機螢光顏料的應用也在螢光檢測,生物探針和標記方面。 在這項研究中,我們導入了超過一萬個有機螢光分子進行分析,並使用分子結構文件生成分子描述符。 我們還應用聚類方法,以更好地了解這些各種有機螢光分子並幫助建模。 我們希望為螢光分子的選擇和設計提供廣泛而有效的模型,並促進螢光材料的發展。在我們的信息方法處理之後,我們的模型中留下的一些描述符最初是為了描述環和多個鍵屬性而創建的。所選出的描述符與我們的化學直覺相關,且解釋性比重較高的描述符多為對共軛性質的描述,與以往化學家對螢光分子結構經驗相符。
  • Item
    使用機器學習方法分析有機分子之螢光波長
    (2018) 羅少廷; Luo, Shao-Ting
    由於目前科技的進步相當快速,各項應用對於螢光材料的要求條件也日趨嚴苛,故針對有機分子進行波長的分析研究,以期望找到更好的有機螢光分子。 有機螢光材料具有相當廣泛的應用。有機螢光色素除了一般民生產品的螢光應用(如螢光紡織品、螢光油墨、螢光塑膠製品等)之外,有機螢光色素在螢光檢驗/生物探針/標示方面的應用可以說是非常廣泛。 因此,我們找尋了大量的有機分子來做分析研究。針對有機分子的結構特性,其中包括結構和電性組成的特徵值,來和螢光放光波長來進行機器學習和演算法的分析。以期望找到其中的關鍵因素,對於螢光分子材料的選擇和設計有更精準的方向。 此篇論文應用了目前正在發展中的機器學習方法來進行螢光分子的挑選,我們使用了Reaxys化學資料庫的分子結構檔案和波長數據,有了這兩個資訊;我們可以推展到機器學習的使用。 先將分子結構檔案(檔案類型: .smile)使用PaDEL結構描述符計算軟體,計算出大量結構檔轉換出的描述符,這些描述符包括電子結構和分子結構。有了大量的分子描述符,我們使用隨機森林演算法挑選出其中與波長數據關聯性較高的描述符,挑選了十個描述符,將這些重要性較高描述符與波長進行支持向量機回歸演算法,並建構出回歸模型,利用此回歸模型進行預測,並將預測波長與訓練用的Reaxys原始波長數進行線性比對,探討其精確性。
  • Item
    以機器學習方法分析結構與螢光波長之關係
    (2018) 周弈銘; Chou, Yi-Ming
    在定量構效關係的研究中,以機器學習方式進行資料挖掘的比例越來越高,而使用少量描述符對某種化學特性進行建模一直是化學訊息學中非常重要的一環,在擁有少量樣本以及大量從E-Dragon資料庫中取得的分子結構與特性相關的描述符數據後,特過機器學習的方式找出能夠對萘和香豆素之不同取代基化合物之螢光波長進行擬合的描述符和演算法,變成為本次實驗的目的,而透過四種不同的機器學習演算法 ( 決策樹回歸、隨機森林回歸、GBDT回歸、極端樹回歸 ) 之間投票和比較,從1664種描述符中取得R3m、Ss、R7u+三種描述符對螢光波長進行擬合;再透過測試集準確率的比較與檢驗,選出對於處理非線性問題具有良好功能的隨機森林回歸做為最後建模工具 ( 隨機森林回歸所使用的層數為19層、65個弱學習器 ) 。而此三種描述符則是在本實驗中做為具有預測螢光波長之描述符。 在建模之後,分析訓練集和測試集的平均絕對誤差以及誤差百分率,得到訓練集之平均絕對誤差為16奈米、誤差百分率為百分之四;而測試集的平均絕對誤差為26奈米、誤差百分率為百分之六。而在分析誤差結果時也發現,R3m和Ss之相關性程度取決於取代基的複雜程度,而不同的複雜程度會對不同光區的分子有著不同的影響。如果具有高度相關性,也就是取代基舉有多重鍵以及複雜性,則落在短波長區間(尤其是紫光)的預測能力較佳;若高度相關性的情況發生在長波長分子上,則模型的預測能力會變弱。