化學系
Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/57
國立臺灣師範大學化學系座落於公館校區理學院大樓。本系成立於民國五十一年,最初僅設大學部。之後於民國六十三年、七十八年陸續成立化學研究所碩士班和博士班。本系教育目標旨在培養化學專業人才與中等學校自然及化學專業師資,授課著重理論及應用性。本系所現有師資為專任教授25人,另外尚有與中央研究院合聘教授3位,在分析、有機、無機及物理化學四個學門的基礎上發展跨領域之教學研究合作計畫。此外,本系另有助教13位,職技員工1位,協助處理一般學生實驗及行政事務。學生方面,大學部現實際共322人,碩士班現實際就學研究生共174人,博士班現實際就學共55人。
本系一向秉持著教學與研究並重,近年來為配合許多研究計畫的需求,研究設備亦不斷的更新。本系所的研究計畫大部分來自國科會的經費補助。此外,本系提供研究生獎助學金,研究生可支領助教獎學金(TA)、研究獎學金(RA)和部分的個別教授所提供的博士班學生獎學金(fellowships)。成績優良的大學部學生也可以申請獎學金。
本校圖書館藏書豐富,除了本部圖書館外,分部理學院圖書館西文藏書現有13萬餘冊,西文期刊合訂本有911餘種期刊,將近約3萬冊。此外,西文現期期刊約450種,涵蓋化學、生化、生物科技、材料及其他科學類等領域。目前本系各研究室連接校園網路,將館藏查詢、圖書流通、期刊目錄轉載等功能,納入圖書館資訊系統中,並提供多種光碟資料庫之檢索及線上資料庫如Science Citation Index,Chemical Citation Index,Chemical Abstracts,Beilstein,MDL資料庫與STICNET全國科技資訊網路之查詢。
News
Browse
Search Results
Item 利用理論計算探討金屬團簇還原二氧化碳的催化反應(2024) 張庭瑜; Chang, Ting-Yu二氧化碳(CO₂)還原反應在減少溫室氣體排放和生產可再生能源方面具有重要意義,由於CO₂分子本身的高穩定性,使其還原過程具有挑戰性。本研究利用理論計算方法,探討了金屬團簇在CO₂還原反應中的催化性能,選擇了幾種具有潛在催化能力的金屬團簇,如鈀(Pd)、和鈷(Co)等金屬,並對其結構和電子性質進行了密度泛函理論(DFT)計算,比較不同團簇與CO₂分子的吸附能及反應路徑,發現這些團簇在特定條件下能夠有效地活化CO₂分子。接著,研究了CO₂在這些金屬團簇表面的還原反應機理,並計算了各步驟的吸附能,結果顯示,Pd和Co團簇在還原CO₂的過程中都具有較高的催化活性,研究結果表明,適當的表面修飾和反應條件可以進一步提升金屬團簇的催化活性和選擇性。總結來說,本研究通過理論計算證明了金屬團簇在CO₂還原反應中的潛在應用價值,為設計高效、選擇性的CO₂還原催化劑提供了重要的理論依據。Item 金/銀奈米島狀薄膜的電漿子增強光催化二氧化碳還原的研究(2021) 許田叡; HSU, Tien-Jui摘要 近年來全球暖化日益嚴重,其中二氧化碳是溫室效應的重要因素之一,因此封存二氧化碳以降低大氣中的二氧化碳濃度,成為人類近年來的重要課題。利用太陽光的能量,在光催化劑上驅動二氧化碳轉化為可再生能源,提供了一個環保且永續的策略。目前以半導體氧化物為主的光催化劑已經有許多文獻發表,但受限於有限的光譜吸收範圍,使其光催化效率有所耗損。由近期的文獻可知,使用貴金屬作為光催化劑,可以產生如甲烷、乙烷、丙烯等碳氫化合物,使其在光催化的領域上逐漸嶄露頭角,成為具有潛力之光催化劑,但其產率及選擇率仍有很大的進步空間且對於反應機制了解有限。本篇材料使用晶種成長法製備金奈米島狀薄膜(Au nanoisland films, Au-NIFs)以及銀奈米島狀薄膜(Ag nanoisland films, Ag-NIFs)。由於金屬奈米材料具有強烈的表面電漿共振(Localized surface plasmon resonance, LSPR)效應,可提升光催化活性,增強二氧化碳還原反應(CO2 reduction reaction, CO2RR)。本篇將Au/Ag-NIFs生長於ITO玻璃上,研究其光催化效果,並進一步藉由控制gap distance的大小,分析金屬奈米島狀結構,以探討對還原產物的選擇性及產率的影響。由光催化結果可得知,Au-NIFs的gap生成可以促進CH4形成,而island及nanoparticles (NPs) (不同Ag-NIFs的生長狀態)之光催化效果分別與gap length和gap distance關係呈正相關。另一方面,與Au-NIFs相比,Ag-NIFs具有較高的CH4產率及選擇性,且Ag NPs 較Ag-NIFs可能更適合用於CH4的CO2RR。由實驗結果可知,Au/Ag-NIFs的生成可以提升CO2RR光催化效果。未來期許本實驗所製備之材料可應用於光電催化二氧化碳還原領域。Item 以化學氣相沉積合成生長錳摻雜鈣鈦礦奈米粒子及其於中孔洞沸石中之限制生長(2021) 傅宇謙; Fu, Yu-Cian本研究以高表面積(SBET > 800 m2 / g)的中孔沸石奈米粒子(mesoporous zeolite nanoparticles, MZNs)做為基材,於高溫下(700-900°C)溴化鉛與溴化銫為前驅物進行化學氣相沉積(chemical vapor deposition, CVD)反應,合成中孔洞限制的CsPbBr3/Cs4PrBr6的鈣鈦礦(pervoskite)奈米粒子。鈣鈦礦奈米粒子大小可以藉由前驅物比例及溫度改變加以調控,其電子結構及型貌利用紫外-可見光譜儀、螢光光譜儀、X-光繞射及穿透式電子顯微鏡佐證。合成過程中引入鎂離子及具有未成對電子的錳離子,使摻雜之鈣鈦礦奈米粒子放光具有不同波長,其結構組成、電子結構及自旋特性,以感應偶合電漿質譜、X光繞射光譜、螢光光譜及電子順磁共振光譜儀證實。此外,使用具半導體特性的中孔氧化石墨烯奈米粒子(mesoporous graphene-oxide nanoparticles, MGNs)做為基材時,可有效增進電荷分離效率,於照光下可使二氧化碳還原成一氧化碳,並以紫外-可見光譜儀及螢光光譜佐證其電子結構之變化。無機鈣鈦礦材料具良好的發光及催化效能,未來欲結合中孔洞薄膜材料之生長,生長具大氣穩定之太陽能轉換材料,提供異質結構於中孔洞沸石材料上限制生長之研究。Item 表面電漿共振效應在奈米金銀修飾二氧化矽球之光催化還原二氧化碳研究(2020) 陳思穎; Chen, Si-Ying由於大氣中的二氧化碳濃度持續升高,進而造成全球暖化和氣候變遷等問題,近年來科學家嘗試使用光催化或電催化等還原方法將二氧化碳轉變成可再利用的能源以解決大氣中二氧化碳過量的問題。本研究選用具有強表面電漿共振效應(LSPR)之金屬元素作為光催化的活性位點,例如金、銀等,進一步探討其對於二氧化碳的光催化還原反應效果。此外,金、銀等過渡金屬元素含有多電子的d軌域,可以幫助穩定CO雙鍵的中間態,提高多電子轉移的機會,進而產生各種多碳產物如乙醛、乙醇等。 為了研究表面電漿共振效應對於光催化反應的影響同時增加有效的催化面積,本研究使用二氧化矽球做為基材,主要是利用Stöber溶膠凝膠法合成,並於其表面生長金銀奈米島狀結構。最後透過還原金屬離子的方式將金屬島狀結構生長於矽球上,改變生長液中所添加的金屬前驅物的量,可以調整島狀結構的間隙大小,並更進一步探討其與光催化還原二氧化碳的關係。最後將乘載好金銀奈米島的粉末樣品照射類太陽光源並連接氣相層析儀可以了解到產物生成速率以及光催化效率和二氧化碳還原產物種類。從結果可知,在長上適量銀的二氧化矽球對乙醇選擇性為54%,乙醛選擇性為34%,且光催化效率是最好為0.0485﹪,但隨著銀的負載量提升,光子效率降低導致還原效率降至0.0295﹪,而觀察到銀奈米島可幫助光催化二氧化碳產物乙醇與乙醛之選擇性提升,之後或許可以使用較大尺寸的矽球使銀島長得更加均勻,增加產物的產率。Item 以理論計算探討以金屬為基材的單原子催化劑上進行二氧化碳電化學還原成乙醇的反應機制(2020) 鄭博修; Bo-Siou Zheng使用過渡金屬可以改善二氧化碳還原反應的效率,及能將二氧化碳轉換成更有價值的產物,因為唯獨銅元素具有產生多碳產物的優點,所以被廣泛運用在二氧化碳還原反應上,2011年,Zheng教授的團隊成功合成出單金屬原子催化劑(Pt1/FeOx),並在一氧化碳的氧化反應中展現不錯的催化效果,最近,有實驗團隊使用此合成策略於二氧化碳還原反應中,發現在”以部分氧化的鈀金屬為基材的單顆銅金屬原子催化劑”上對於乙醇有高度的選擇性,所以我們將透過模擬該系統在進行二氧化碳還原的反應產生乙醇的反應路徑。 鈀金屬在二氧化碳還原的反應上對於探討產生CO具有選擇性,因此二氧化碳會先經過鈀基材還原成一氧化碳,隨後轉移至銅原子周圍進行 “氫化”及“碳-碳耦合”的動作。而最終的實驗結果顯示,在(100)系統中碳碳耦合的速率決定步驟是, COH與CHO在Pd與Cu的交界處進行耦合;而(111)系統中碳碳耦合的速率決定步驟是,CO及CHO直接在銅原子上方進行耦合的步驟。Item 利用第一原理探討材料表面上二氧化碳電催化還原之特性 I.含氮碳管中類有機金屬結構對於二氧化碳的催化特性及碳管雜化後性質 II.應力效應對材料表面之電子結構及其對二氧化碳電催化還原反應特性之影響(2018) 詹侑得; Chan, Yu-Te我們使用DFT理論計算探討了二氧化碳還原反應在過度金屬螯合於氮參雜碳管(TM-4N2v-CNT)的特性。為了要模擬平面四方體均相催化劑,在這個模型當中包括了四個氮原子取代及兩個空缺位置,並在其空缺位螯合上Fe, Ru, Os, Co, Rh, Ir, Ni, Pt及Cu。接著使用此結構沿著二氧化碳還原路徑尋找可能存在的中間體。在本篇所有研究的金屬,皆偏向進行水還原(Hydrogen evolution reaction),且只有第八族元素可與CO產生強鍵結,並生成後續還原產物,而其他金屬則偏向生成HCOOH。而我們也以ligand field theory解釋這個中心金屬對於CO鍵結強弱的差異。透過增加電壓去穩定CO中間體,可在中心金屬為Ru及Os時產生甲烷,在中心金屬為Fe時產生甲醇。並且當增加碳管曲率時可減少電催化所需之電壓。然而反應中的主要產物主要還是由中心金屬種類決定。 我們透過DFT理論計算展示了應力效應如何影響銅催化電極對二氧化碳還原反應(CO2RR)的催化選擇性,我們討論了在二氧化碳電催化路徑上幾個關鍵的中間體,例如(_^*)H、(_^*)COOH、(_^*)CO、(_^*)CHO及(_^*)OCCOH,透過在考慮應力效應下前述中間體的相對形成能,我們推測二氧化碳還原反應(CO2RR)產出2C+的路徑將會被推動,其第一步關鍵中間體(_^*)COOH將比競爭反應水還原(HER)的中間體(_^*)H的形成能更增加約0.10 - 0.15eV,同時((_^*)CO→(_^*)CHO )的能障也增加約0.10-0.15eV,同時(_^*)CO的鍵結強度增加,表面上的(_^*)CO濃度因此升高。在適當應力區域,二碳中間體(_^*)OCCOH形成能會增加,並且在特定應力下此幅度大於一碳中間體(_^*)CHO約0.2eV,使得二碳產物的法拉第效率將有所提升。我們也藉由電子結構效應及立體結構效應解釋這些現象可能的原因。在本篇研究中,我們也發現在擠壓的應力下可能存在適於產生3C產物的表面銅原子排列,對後續材料的設計提供參考。Item 以理論計算方法探討二氧化碳在混合價態的氧化亞銅表面之二碳聚合反應(2019) 白孝天; Pai, Hsiao-Tien通過理論計算研究氧化銅材料上二氧化碳還原的電催化反應。在先前的文獻中,使用混合價態的銅氧化物作為催化劑容易發生一氧化碳的二聚化反應,這些材料包括氧化銅和氧化亞銅,後者是本研究的重點。 首先,通過觀察隨著氧空缺濃度增加而造成的形成能變化,對三個不同的表面做塞選,分別為Cu2O (100),Cu2O(110)和Cu2O(111)表面。 我們發現Cu2O(110)表面在所有考慮的表面中最為穩定。此外,我們研究了C-C偶聯反應性與Cu2O(110)的氧空缺之間的相關性。我們發現,當表面的Cu+ / Cu0的比例為1:1時,上述反應最有可能發生,能障為0.71eV,為-0.37eV放熱反應。且也解釋了為何在氧化銅衍生物表面的對於乙醇有較高的產物選擇性。Item 硫化亞銅修飾二硫化錫形成奈米異質結構來提升光催化二氧化碳還原效率之研究(2018) 簡理軒; Chien, Li-Hsuan本研究利用人造光合成作用系統將二氧化碳還原轉換成碳氫化合物,作為未來新興的替代性能源,以期改善愈趨被重視的環境及能源議題,本研究以溶劑熱法合成二硫化錫與硫化亞銅,由於兩種材料的能隙大小與位置能讓二氧化碳還原反應發生,並以異質接面方式混合兩種半導體材料,有效的將激發後所產生的電子與電洞分離,並降低電子電洞輻射復合的現象,使其有較多的激子能夠飄移至材料表面進行二氧化碳還原反應;在本研究中,首先就材料的晶體結構、成份比例及元素、光學性質等特性分析,再利用氣相層析,發現二硫化錫與硫化亞銅分別能產出乙醛及甲醇,兩者材料在二氧化碳還原上具有不同之特性,經由混合兩材料形成異質結構,發現能產出乙醛與大量的乙醇,並有效地提高光化學量子轉換效率,可達到約0.048%,且乙醇是能作為燃料的碳氫化合物,最後藉由改變兩種材料的混合比例來優化反應效率,在不同比例下,本研究發現以0.5:1的比例混合硫化亞銅與二硫化錫,相較於其他比例,光化學量子轉換效率能提高至0.072%,從此研究,能證明利用p-n異質接面結構方法,能有效提高光觸媒在二氧化碳還原反應上的效率。Item 以金銅核殼奈米粒子電催化二氧化碳還原反應(2018) 王弘毅; Wang, Hong-Yi二氧化碳為造成地球上溫室效應的因素之一,因此如何降低二氧化碳的含量,便是人類近年來主要的研究課題。其中,使用電催化二氧化碳還原是其中一種重要的方法。由文獻已知使用銅金屬催化,相對於其他金屬,銅可以產生較多碳氫類產物,例如甲烷、乙烯、甲醇、乙醇等等。不過,目前的研究對於銅的催化效果尚未有定論。本篇試圖以金銅核殼奈米結構探討其催化效果,以及不同晶面對還原產物選擇性的影響。其中晶型分別為含有(111)晶面的立方體與含有(111)晶面的八面體,並由TEM、SEM、XRD、UV鑑定其結構。而還原產物以GC-TCD和GC-FID作分析,並以各產物的法拉第電流效率值來判定產物的選擇性。由實驗分析,純銅奈米立方體的還原產物主要為乙烯,純銅奈米八面體的還原產物主要為甲烷,金銅核殼奈米立方體在不同電壓下主要產物不盡相同,但是可以提高乙醇的電流效率,推斷金的加入可以降低部分反應機構的活化能,使反應機構中需要傳遞較多電子的醇類得以容易產生。