化學系

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/57

國立臺灣師範大學化學系座落於公館校區理學院大樓。本系成立於民國五十一年,最初僅設大學部。之後於民國六十三年、七十八年陸續成立化學研究所碩士班和博士班。本系教育目標旨在培養化學專業人才與中等學校自然及化學專業師資,授課著重理論及應用性。本系所現有師資為專任教授25人,另外尚有與中央研究院合聘教授3位,在分析、有機、無機及物理化學四個學門的基礎上發展跨領域之教學研究合作計畫。此外,本系另有助教13位,職技員工1位,協助處理一般學生實驗及行政事務。學生方面,大學部現實際共322人,碩士班現實際就學研究生共174人,博士班現實際就學共55人。

本系一向秉持著教學與研究並重,近年來為配合許多研究計畫的需求,研究設備亦不斷的更新。本系所的研究計畫大部分來自國科會的經費補助。此外,本系提供研究生獎助學金,研究生可支領助教獎學金(TA)、研究獎學金(RA)和部分的個別教授所提供的博士班學生獎學金(fellowships)。成績優良的大學部學生也可以申請獎學金。

本校圖書館藏書豐富,除了本部圖書館外,分部理學院圖書館西文藏書現有13萬餘冊,西文期刊合訂本有911餘種期刊,將近約3萬冊。此外,西文現期期刊約450種,涵蓋化學、生化、生物科技、材料及其他科學類等領域。目前本系各研究室連接校園網路,將館藏查詢、圖書流通、期刊目錄轉載等功能,納入圖書館資訊系統中,並提供多種光碟資料庫之檢索及線上資料庫如Science Citation Index,Chemical Citation Index,Chemical Abstracts,Beilstein,MDL資料庫與STICNET全國科技資訊網路之查詢。

News

Browse

Search Results

Now showing 1 - 1 of 1
  • Item
    新穎能源材料之第一原理計算模擬與研究
    (2020) 劉啟佑; Liu, Chi-You
    為了降低石化燃料的使用,科學家們一直致力於尋找乾淨的替代能源,希望在未來使用液態或固態形式的能源。與此同時,也需要發展安全又具經濟效益的新能源儲存系統,最終的目標是尋找具有高能源密度、容易儲存及運輸、並且更為永續的能源。在本論文當中使用了計算化學的方法,在奈米至原子尺度下,藉由電子結構、催化性質和化學反應機構的探討,來改善並發展新的能源材料。總和來說,我們基於第一原理方法的理論模擬,針對不同能源與能源儲存系統的材料表面進行研究,包含了直接甲醇燃料電池(Direct methanol fuel cell, DMFC)、鋰硫(Li-S)電池、質子交換膜燃料電池(Proton exchange membrane fuel cell, PEMFC)和費托合成反應(Fischer-Tropsch synthesis, FTS)等領域。各部分詳細的介紹如下: 第一部份:直接甲醇燃料電池內一氧化碳移除反應在鉑修飾多氧陽極表面(Pt2/o-MO2(110), M = Ru及Ir)的研究 在第三章中將針對液態的直接甲醇燃料電池(DMFC)進行討論。DMFC反應過程中產生的CO或其他碳氫化合物(CmHn)很容易就毒化Pt金屬陽極表面。我們研究CO及H2O於乾淨Pt2/MO2(110)以及多氧Pt2/o-MO2(110)表面(M = Ru及Ir)上的吸附現象。結果顯示使用多氧的表面能夠有效的降低CO及H2O的吸附能,並且讓CO與表面的OH基團以更低的活化能進行類水氣轉換(WGS-like)反應,減緩CO毒化的現象。 第二部分:鋰硫電池中含鋰多硫化物在石墨稀基底材料上的吸附結構研究分析 第四章我們則針對鋰硫(Li-S)二次電池進行研究。近期的文獻顯示,若在陰陽極中間放置以碳為基底的材料做為中間層(interlayer),能夠有效改善含鋰多硫化物(LiPSs)的飛梭現象並增加電池壽命。我們建構了不同結構形式的異原子(N或S)取代的石墨稀表面,發現當使用含鋰的N及S共同取代石墨稀表面做為鋰硫電池中間層時,能夠讓LiPSs以完整吸附機制吸附,有效的減緩飛梭現象。 第三部分:Pt/v-Tin+1CnT2二維材料表面邊界性質對氧氣還原反應催化的影響 第五章中探討了質子交換膜燃料電池(PEMFC)的陰極氧氣還原反應(ORR),當使用二維Tin+1CnT2與Pt/v-Tin+1CnT2 (n = 1 ~ 3, T = O and/or F)的材料時,不同取代基對於ORR反應過電壓η的影響。我們的結果顯示F的取代基在表面上鍵結較弱且較不穩定,與實驗上觀察到脫附或被取代的現象符合。但由於F取代基在表面上時,內層的Ti與C具有較高的共價性,有利於吸附物吸附並反應,導致使用含有F取代基的表面進行ORR時可以得到較低的過電壓η。 第四部份:利用雙金屬中心的CNT基底材料促進費托合成中C-C成鍵反應 在費托合成(FTS)中,C-C成鍵的效率是最重要的因素。在第六章中我們模擬了雙金屬中心的M1M2/N6h-CNT (M = Fe, Co, and Mn)表面,分析其電子結構及催化活性,並考慮了三種能夠增長碳鏈長度的C-C成鍵反應:[CO + CH3]、[CO + CH2]和[CH2 + CH2]。結果顯示,CH2單體在2Co/N6h和CoMn/N6h表面上能經由一個近乎為零的活化能,順利進行C-C成鍵反應。整體來說,我們分析了雙金屬中心的系統對於在FTS中增加CO轉換率並降低C1產物比例的可行性。