化學系

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/57

國立臺灣師範大學化學系座落於公館校區理學院大樓。本系成立於民國五十一年,最初僅設大學部。之後於民國六十三年、七十八年陸續成立化學研究所碩士班和博士班。本系教育目標旨在培養化學專業人才與中等學校自然及化學專業師資,授課著重理論及應用性。本系所現有師資為專任教授25人,另外尚有與中央研究院合聘教授3位,在分析、有機、無機及物理化學四個學門的基礎上發展跨領域之教學研究合作計畫。此外,本系另有助教13位,職技員工1位,協助處理一般學生實驗及行政事務。學生方面,大學部現實際共322人,碩士班現實際就學研究生共174人,博士班現實際就學共55人。

本系一向秉持著教學與研究並重,近年來為配合許多研究計畫的需求,研究設備亦不斷的更新。本系所的研究計畫大部分來自國科會的經費補助。此外,本系提供研究生獎助學金,研究生可支領助教獎學金(TA)、研究獎學金(RA)和部分的個別教授所提供的博士班學生獎學金(fellowships)。成績優良的大學部學生也可以申請獎學金。

本校圖書館藏書豐富,除了本部圖書館外,分部理學院圖書館西文藏書現有13萬餘冊,西文期刊合訂本有911餘種期刊,將近約3萬冊。此外,西文現期期刊約450種,涵蓋化學、生化、生物科技、材料及其他科學類等領域。目前本系各研究室連接校園網路,將館藏查詢、圖書流通、期刊目錄轉載等功能,納入圖書館資訊系統中,並提供多種光碟資料庫之檢索及線上資料庫如Science Citation Index,Chemical Citation Index,Chemical Abstracts,Beilstein,MDL資料庫與STICNET全國科技資訊網路之查詢。

News

Browse

Search Results

Now showing 1 - 1 of 1
  • Item
    理論計算探討下列反應的機構: 1.大氣中含氮自由基的反應 2.有機分子環化反應及環加成反應
    (2005) 陳欣聰; Chen Hsin-Tsung
    本論文分為兩大主題: 一. 探討大氣中含氮的自由基。從石化燃料燃燒產生的氮氧化物由於它們具有毒性,是大氣污染物,所以相當令人感到關注,我們藉由理論計算的方法來探討其可能的反應機制,以理解燃燒產生的空氣污染。共分為兩個單元進行討論: 第一部分: 探討NCN 和NO, NS的反應機制,此反應分為四個不同路徑,其可能的產物為N2O/N2S + CN, N2 + NCO/NCS, N2 + CNO/CNS, CNN + NO/NS,分別表示為p1/p1s 到 p4/p4s。在NCN + NO的反應中,所得到的加合物,只有nitroso 加合物NCNNO的能量低於反應物,約22 kcal/mol,和實驗上觀察的一致,反應藉由加合物NCNNO快速的轉移成產物。在NS的反應中,thionitroso NCNNS和thiazyl NCNSN加合物都比反應物穩定,分別約為43和29 kcal/mol。其中五員環-NCNNS中間物當橋樑以連結此兩個加合物,而五員環-NCNNS中間物亦比反應物穩定,約為36 kcal/mol。在NS的位能曲面圖中,除了產生p4s的路徑外,所有的能障皆為負值,但在 NO中,則全為正數。產生p1 (N2 O+ CN) 的能障最低為3.8 kcal/mol,而生成p2 (N2 + NCO) 和p2s (N2 + NCS) 則是放熱最多的路徑,分別為100.94 和107.38 kcal/mol。 第二部分: 探討NCX (X=O, S) 和C2H2的反應機制,此反應分為五個不同路徑,其可能的產物為HCCO/HCCS+ HCN, HCCO/HCCS + HNC, HNCO/HNCS + C2H, HOCN/HSCN + C2H, HC2NCO/HC2NCS + H,分別表示為P1/P1s到P5/P5s。直接氫抓取反應有利於產生HNCO,而不是HOCN,但是在NCS反應,卻是HSCN比HNCS容易生成。有兩種不同的路徑產生中間物 oxazole/thiazole,但是兩種不同的路徑能障的高低在NCO和NCS反應卻相反。在高溫下,HNCO/HSCN + C2H的路徑,可能有利於進行。其它的產物路徑和實驗預測的相符合,先形成短生命週期的加合物 (adduct) NCO/NCS-C2H2,然後再快速的轉變成產物。 二. 研究有機分子成環的反應。此反應在有機合成或生物學上皆扮演重要的角色,我們藉由理論計算的方法來探討其可能的反應機制,及取代基改變對反應機制的影響。共分為兩個單元進行討論: 第一部分: 研究自由基NCO + RCCH (R= H, CH3, F, Cl, CN)的[3+2] 環加成反應,產生五員雜環oxazole。此環加成反應為異步(asynchronous)形成兩個鍵的機制,當乙炔上的其中一個氫替換成R基(R=CH3, F, Cl, CN),反應便有立體選擇性(regioselectivity)的問題。我們使用Fukui functions和HSAB的理論來解釋不同取代基的位置選擇性,所得到的結果和位能曲面圖上的能障相符合,除了F外。反應第一步為NCO上的N原子攻擊RCCH上未取代的碳原子,然後O原子再和另一個碳原子環起來,第一步能障 (uts1) 的大小為H > F > CN > Cl >CH3 > OH > NH2 ,第二步能障 (uts2) 的大小為H > Cl > CH3 > CN > OH > F > NH2。 第二部分: Enyne-allenes在allene末端以alkenyl取代(R2=CH2CH-)的環化反應,原則上具有四種可能的位置選擇反應。第一種環化模式—藉由C2-C6 鍵的生成,產生, π-雙自由基的五員環中間物2 (Scheme 1, Path A)。第二種環化模式為已知的Myers-Saito反應—藉由C2-C7新鍵的生成,產生, π-雙自由基的六員環中間物3 (Scheme 1, Path C)。第三種模式為分子內的Diels-Alder [4+2]環加成反應,形成雙環化合物4 (Scheme 1, Path B)。最後一種模式為分子內的[2+2]環加成反應,經由雙自由基(2)形成雙環化合物5 (Scheme 1, Path D)。取代基效應對enyne-allene是有影響的,不同取代基對以上所敘述的四種模式反應,分別以不同程度降低或升高能障,而有利於某種模式的進行,分別做詳細的討論。