學位論文
Permanent URI for this collectionhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/73897
Browse
3 results
Search Results
Item 以基於決策實驗室分析法之網路流程預測汰役電池發展之情境分析與應用(2023) 陳柏年; Chen, Po-Nien汰役電池為「汽車應用壽命」已盡,但仍具有約七成至八成剩餘容量的電池。近年來,隨著電動車日漸普及,汰役電池之數量日增。由於全球主要國家或經濟體積極推動循環經濟與永續發展,因此,汰役電池應用之預測與產業發展至關重要。雖然如此,相關研究甚少,為跨越研究缺口,本研究擬預測汰役電池產業未來之發展情境,並且前瞻各情境下之應用。為達成此目標,本研究首先邀集專家,以修正式德菲法確認宏觀環境分析法 (Political, Economic, Social, Technological; Environmental and Legal,PESTEL)之中,各個構面作為情境驅動軸之適用性,其次,使用決策實驗室分析法(Decision Making Trial and Evaluation Laboratory,DEMATEL),建構構面和準則間的影響關係,並以基於決策實驗室分析法之網路流程(DEMATEL-based Analytic Network Process,DANP),推衍每個構面和準則的影響關係權重後,選出三個未來情境最重要的驅動軸之後,以每個驅動軸的正向和反向驅動力,組合八種情境,最後,導入最佳化妥協解法(VIseKriterijumska Optimizacija I Kompromisno Resenje,VIKOR),選擇未來五年我國汰役電池產業發展最適合的三種最佳情境。為選擇各情境之下,汰役電池最適合的應用,第二階段研究首先將確認十二種汰役電池的應用方案,再邀集專家,以第一階段宏觀環境分析法之構面與準則,導入最佳化妥協解法,評估三種情境下之最適應用方案。依據實證研究結果,主要情境驅動軸為技術、法規與經濟,最可能的情境有三,於技術好、法規支持及經濟成長之情境中,最適合的應用為風力發電、太陽能發電、與工廠儲能;技術好、法規不支持及經濟成長之情境中,最適合的應用為太陽能發電,其餘應用與情境一相同;而於技術好、法規支持及經濟衰退之第三種情境中,最適合的應用為工廠儲能、風力發電與行動儲能裝置。本研究之結果,可作為政府訂定政策,或相關產業發展汰役電池之用。Item 以專利探勘、主路徑分析、模糊背包問題與模糊能力集合擴展定義閘極全環場效電晶體之技術路徑圖(2021) 郭盈廷; Kuo, Ying-Ting近年來,全球主要半導體廠極力研發次世代技術,以求突破製程微縮之極限,並進而強化核心競爭力。閘極全環場效電晶體 (Gate-All-Around Field-Effect Transistor, GAAFET)為新型半導體元件,除了能改善傳統元件低效能與高功率之缺陷外,更為延長摩爾定律的重要關鍵。由於閘極全環場效電晶體主要應用於邏輯製程,對晶圓代工之領導廠商而言,佈局次世代奈米製程閘極全環場效電晶體之專利,亟為重要。惟業界與學界少有閘極全環場效電晶體相關之專利分析。因此,本研究擬訂定一分析架構,探勘並佈局專利。首先,本研究定義所欲探勘之專利關鍵字,並檢索美國專利商標局 (United States Patent and Trademark Office, USPTO)之專利資料庫,其次,運用主路徑分析法 (Main Path Analysis, MPA)找出閘極全環場效電晶體的關鍵主要路徑軌跡,再藉由決策實驗室分析法 (Decision Making Trial and Evaluation Laboratory,DEMATEL) 及實驗室決策網路流程分析法 (DEMATEL based Analytic Network Process,DANP)探討專利之間的影響關係和權重。最後,以模糊背包問題(Fuzzy Knapsack Problem, FKP)演算法計算權重,選取最重要之技術,再透過模糊能力集合擴展法 (Fuzzy Competence Set Expansion),訂定技術路徑圖。依據實證研究之結果,本研究求得最佳的專利組合共包括12 項專利技術,不僅作為瞭解新世代半導體元件發展脈絡之基礎之外,也可作為後進廠商佈局專利之依據。此外,所發展之技術探勘架構,也可用於探索其他領域技術與佈局專利之用。Item 以多準則決策法、技術探勘、主路徑分析、模糊背包問題及模糊能力集合擴展佈局半導體奈米線場效電晶體專利(2021) 王亮傑; Wang, Liang Chieh自二十世紀中葉以來,半導體科技持續進步,領導廠商持續發展新製 程與元件,以製造更微小、更有效率的晶片。然而面臨物理極限,半導體 元件的微縮技術,已面臨瓶頸,在不久的將來,摩爾定律即將發展至盡頭。 為了延展莫爾定律,奈米線成為最有潛力之元件。奈米線為一維結構的材 料,其特性為長寬比大、電阻低。應用奈米線技術於場效電晶體中,可以 減少功率損失、提升元件效能、微縮尺寸,為延長摩爾定律的重要元件之 一。因此,半導體廠商紛紛研發技術,並且申請專利,以鞏固其競爭優勢。 顯然,奈米線場效電晶體(Nanowire Field-Effect Transistor, NWFET)技術與 專利為半導體廠商之重要無形資產,然而較少研究著墨於奈米線場效電晶 體的專利佈局。因此,本研究擬探討奈米線場效電晶體之專利,跨越此研究缺口。首先,本研究擬確認專利範圍,並透過探勘美國專利商標局(United States Patent and Trademark Office, USPTO)之專利資料庫,擷取相關專利, 其次,利用主路徑分析法(main path analysis)探索奈米線場效電晶體之專利, 建構引用網路中之主要路徑及專利。接著透過決策實驗室分析法(Decision Making Trial and Evaluation Laboratory, DEMATEL)及基於決策實驗室分析 法之網路流程(DEMATEL based Analytic Network Process, DANP),找出個 別專利間的影響關係和權重值。最後應用模糊背包問題(Fuzzy Knapsack Problem, FKP)演算法推演 25 項關鍵技術後,藉由能力集合擴展(Fuzzy Competence Set Expansion)法,規劃技術開發路徑圖。藉由以上方法,可了 解奈米線技術專利發展過程中的重要技術,並可作為後進廠商佈局專利, 發展研發策略之依據,本研究之實證成果,可作為後進晶圓代工廠商佈局 未來專利之依據,所發展之研究方法,也可為其他產業所用。