教師著作

Permanent URI for this collectionhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/37076

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    On-chip Fabrication of Well-aligned and Contact-barrier-free GaN Nanobridge Devices with Ultrahigh Photocurrent Responsivity
    (Wiley-VCH Verlag, 2008-07-01) R.-S. Chen; S.-W. Wang; Z.-H. Lan; J. T.-H. Tsai; C.-T. Wu; L.-C. Chen; K.-H. Chen; Y.-S. Huang; Chia-Chun Chen
    Building nanobridges: Direct integration of an ensemble of GaN nanowires (n) onto a microchip produces a viable nanobridge (NB) device with good alignment and contact performance, the design of which demonstrates the potential of nanowires for sensor development. These GaN NBs have strong surface-enhanced photoconductivity with ultrahigh responsivity
  • Item
    Characterization of Nanodome on GaN Nanowires Formed with Ga Ion Irradiation
    (Nihon Kinzoku Gakkai, 2004-01-01) S. Muto; S. Dahara; A. Datta; C.-W. Hsu; C.-T. Wu; C.-H. Shen; L. -C. Chen; K.-H. Chen; Y.-L. Wang; T. Tanabe; T. Maruyama; H.-M. Lin; Chia-Chun Chen
    Structure of nano-domes formed by Ga+ ion irradiation with a focused ion beam (FIB) apparatus onto GaN nanowires (NWs) was examined with conventional transmission electron microscopy (CTEM), electron energy-loss spectroscopy (EELS) and energy-filtering TEM (EF-TEM). The nano-dome consisted of metallic gallium, covered by a GaN layer, the structure of which is amorphous or liquid. It is considered that the dome structure is formed by preferential displacement of lighter element (N) and agglomeration of heavier one (Ga). 1 MeV electron irradiation onto the sample pre-irradiated by Ga+ ions at a dose below the threshold for the dome formation induced the N2 bubble formation without segregating Ga atoms, which suggests the radiation-enhanced diffusion (RED) of heavy atoms plays an important role in the nano-dome formation.