Adaptive Multivariable Fuzzy Logic controller

dc.contributor國立臺灣師範大學機電工程學系zh_tw
dc.contributor.authorYeh, Zong-Muen_US
dc.date.accessioned2014-10-30T09:36:09Z
dc.date.available2014-10-30T09:36:09Z
dc.date.issued1997-02-16zh_TW
dc.description.abstractThis paper presents a systematic methodology to the design of a multivariable fuzzy logic controller (MFLC) for large-scale nonlinear systems. A new general method which is based on a performance index of sliding motion is used to generate a fuzzy control rule base. Reducible input variables obtained from sliding motion are adopted as input variable of the fuzzy controller and the output scale factors of the MFLC are tuned by the switching variable. Thus, the determination of the input/output scale factors becomes easier and the system performance is significantly improved. The simulation results of a Puma 560 system and a two-inverted pendulum system demonstrate that the attractive features of this proposed approach include a smaller residual error and robustness against nonlinear interactions.en_US
dc.description.urihttp://www.sciencedirect.com/science?_ob=MImg&_imagekey=B6V05-3SNN281-1C-2&_cdi=5637&_user=1227126&_pii=0165011495003746&_origin=search&_coverDate=02%2F16%2F1997&_sk=999139998&view=c&wchp=dGLzVzb-zSkzS&md5=e81483b564a9da03259a3e60f58fc4f4&ie=/sdarticle.pdfzh_TW
dc.identifierntnulib_tp_E0402_01_005zh_TW
dc.identifier.issn0165-0114zh_TW
dc.identifier.urihttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/36879
dc.languageenzh_TW
dc.publisherElsevieren_US
dc.relationInternational Journal of Fuzzy Sets and Systems, 86, 43-60. (SCI)en_US
dc.relation.urihttp://dx.doi.org/10.1016/0165-0114(95)00374-6zh_TW
dc.rights.urihttp://www.elsevier.com/wps/find/homepage.cws_homezh_TW
dc.subject.otherFuzzy controlen_US
dc.subject.otherSliding modeen_US
dc.subject.otherLearning algorithmen_US
dc.subject.otherAdaptive controlen_US
dc.titleAdaptive Multivariable Fuzzy Logic controlleren_US

Files

Collections