Adaptive Multivariable Fuzzy Logic controller

No Thumbnail Available

Date

1997-02-16

Authors

Yeh, Zong-Mu

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier

Abstract

This paper presents a systematic methodology to the design of a multivariable fuzzy logic controller (MFLC) for large-scale nonlinear systems. A new general method which is based on a performance index of sliding motion is used to generate a fuzzy control rule base. Reducible input variables obtained from sliding motion are adopted as input variable of the fuzzy controller and the output scale factors of the MFLC are tuned by the switching variable. Thus, the determination of the input/output scale factors becomes easier and the system performance is significantly improved. The simulation results of a Puma 560 system and a two-inverted pendulum system demonstrate that the attractive features of this proposed approach include a smaller residual error and robustness against nonlinear interactions.

Description

Keywords

Citation

Collections