深度學習輔助全像斷層三維影像分割及資料視覺化

dc.contributor鄭超仁zh_TW
dc.contributor杜翰艷zh_TW
dc.contributorCheng, Chau-Jernen_US
dc.contributorTu, Han-Yenen_US
dc.contributor.author戚瀚文zh_TW
dc.contributor.authorChi, Han-Wenen_US
dc.date.accessioned2024-12-17T03:26:41Z
dc.date.available9999-12-31
dc.date.issued2023
dc.description.abstract本研究主要探討如何將全像斷層造影系統所擷取的三維細胞影像進行分割,得到不同的細胞胞器三維模型,並且使用深度學習來輔助快速且自動化處理。此外,本研究將會進一步把分割好的影像編寫成電腦全像片,並會詳細說明設計三維電腦全像片演算法的原理以及實現方法,最後,將運用RGB全像顯示技術,以進行光學重建實現資料視覺化的呈現。zh_TW
dc.description.abstractThis research primarily explores how to do the holographic tomography systems to captured three-dimensional cell images for segmentation to obtain distinct 3D models of cell organelles. It utilizes deep learning-assisted for fast and automated processing. Additionally, this research will further convert the segmented images into computer-generated holograms. The principles and implementation methods of the 3D computer-generated hologram algorithm will be elaborated upon. Finally, the RGB holographic display technique will be employee for optical reconstruction to achieve data visualization presentation.en_US
dc.description.sponsorship光電工程研究所zh_TW
dc.identifier61077001H-44471
dc.identifier.urihttps://etds.lib.ntnu.edu.tw/thesis/detail/8bcfe6baefbdd990f71328a2db1eec96/
dc.identifier.urihttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/123156
dc.language中文
dc.subject全像斷層zh_TW
dc.subject三維細胞影像分割zh_TW
dc.subject深度學習zh_TW
dc.subjectRGB全像顯示zh_TW
dc.subject資料視覺化zh_TW
dc.subjectholographic tomographyen_US
dc.subjectthree-dimensional cell images segmentationen_US
dc.subjectdeep learningen_US
dc.subjectRGB holographic displayen_US
dc.subjectdata visualizationen_US
dc.title深度學習輔助全像斷層三維影像分割及資料視覺化zh_TW
dc.titleDeep learning–assisted three-dimensional segmentation for data visualization of holographic tomographyen_US
dc.type學術論文

Files

Collections