深度學習輔助全像斷層三維影像分割及資料視覺化

No Thumbnail Available

Date

2023

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

本研究主要探討如何將全像斷層造影系統所擷取的三維細胞影像進行分割,得到不同的細胞胞器三維模型,並且使用深度學習來輔助快速且自動化處理。此外,本研究將會進一步把分割好的影像編寫成電腦全像片,並會詳細說明設計三維電腦全像片演算法的原理以及實現方法,最後,將運用RGB全像顯示技術,以進行光學重建實現資料視覺化的呈現。
This research primarily explores how to do the holographic tomography systems to captured three-dimensional cell images for segmentation to obtain distinct 3D models of cell organelles. It utilizes deep learning-assisted for fast and automated processing. Additionally, this research will further convert the segmented images into computer-generated holograms. The principles and implementation methods of the 3D computer-generated hologram algorithm will be elaborated upon. Finally, the RGB holographic display technique will be employee for optical reconstruction to achieve data visualization presentation.

Description

Keywords

全像斷層, 三維細胞影像分割, 深度學習, RGB全像顯示, 資料視覺化, holographic tomography, three-dimensional cell images segmentation, deep learning, RGB holographic display, data visualization

Citation

Collections

Endorsement

Review

Supplemented By

Referenced By