缺血預處理後不同休息時間對有氧能力的影響

No Thumbnail Available

Date

2019

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

目的:本研究旨在探討缺血預處理 (ischemic preconditioning, IPC) 後不同休息時間對有氧能力的影響。方法:以12名大專受過訓練之男性運動員為受試者,須接受1次的控制處理 (control, CON),再以隨機分配與平衡次序的實驗設計接受2次IPC。在首次實驗中,受試者於功率腳踏車上執行遞增負荷運動測驗 (graded exercise test, GXT) 以作為CON;在後續實驗中,受試者須在接受IPC後休息5分鐘 (IPC5) 或30分鐘 (IPC30),再執行GXT。運動測驗過程中,量測攝氧峰值 (peak oxygen uptake, VO2peak)、功率峰值 (peak power output, Wpeak)、衰竭時間 (time to exhaustion, TTE)、第一換氣閾值 (first ventilatory threshold, VT1)、第二換氣閾值 (second ventilatory threshold, VT2) 與換氣閾值對應之輸出功率 (wVT1 和wVT2),並監控肌肉氧飽和度的改變量,包括含氧血紅素 (change in oxyhemoglobin, ΔO2Hb)、去氧血紅素 (change in deoxyhemoglobin, ΔHHb)、總血紅素 (change in total hemoglobin, ΔtHb) 及組織氧飽和指標 (change in tissue saturation index, ΔTSI)。結果:VO2peak、VT1、VT2、wVT1 與wVT2在3種處理間沒有顯著差異。然而,IPC5 與IPC30之Wpeak (IPC5 vs. IPC30 vs. CON, 280.3 ± 39.0 vs. 282.4 ± 38.0 vs. 269.3 ± 31.4 W) 與TTE (IPC5 vs. IPC30 vs. CON, 740.3 ± 77.8 vs. 744.5 ± 76.0 vs. 718.0 ± 62.7 s) 顯著高於CON (p< .05)。ΔO2Hb在VT1、VT2與衰竭時,以及ΔtHb在VT2時,IPC5顯著高於CON。此外,IPC5在VT2與衰竭時之ΔO2Hb與ΔtHb顯著高於IPC30。結論:缺血預處理後短與長休息時間均能促進有氧能力,其中IPC5之效益可能與血流量上升有關。
Purpose: To investigate the effects of different timing between ischemic preconditioning (IPC) and exercise test on aerobic capacity. Methods: Twelve college male athletes were recruited in this study, and were required to complete a control trial (CON) and 2 randomized crossover IPC trials. During the first trial, participants performed the graded exercise test (GXT) on a cycling ergometer as the CON. During the following trials, participants were asked to rest 5 min (IPC5) or 30 min (IPC30) after IPC before conducting the GXT. Peak oxygen uptake (VO2peak), peak power output (Wpeak), time to exhaustion (TTE), first and second ventilatory thresholds (VT1 and VT2) against the power output (wVT1 and wVT2) were measured during GXT. Changes in muscle oxygenation of quadriceps, including oxyhemoglobin (ΔO2Hb), deoxyhemoglobin (ΔHHb), total hemoglobin (ΔtHb) and tissue saturation index (ΔTSI), were continuously monitored throughout all trials. Results: No significant differences were found in VO2peak, VT1, VT2, wVT1 and wVT2 among the three conditions; however, Wpeak (IPC5 vs. IPC30 vs. CON, 280.3 ± 39.0 vs. 282.4 ± 38.0 vs. 269.3 ± 31.4 W) and TTE (IPC5 vs. IPC30 vs. CON, 740.3 ± 77.8 vs. 744.5 ± 76.0 vs. 718.0 ± 62.7 s) in IPC were significantly higher than those in CON (p< .05). The ΔO2Hb at VT1, VT2, and VO2peak, as well as ΔtHb at VT2 was significantly higher in IPC5 than those in CON. Furthermore, IPC5 yielded significantly higher ΔO2Hb and ΔtHb at VT2 and VO2peak compared with IPC30. Conclusion: Short and long rest duration after IPC might improve aerobic capacity, and the improvement in IPC5 might associate with the increase in muscular blood flow.

Description

Keywords

遞增負荷運動, 肌肉氧飽和度, 熱身活動, 再灌注, graded exercise test, muscle oxygenation, warm-up, reperfusion

Citation

Collections

Endorsement

Review

Supplemented By

Referenced By