毫米波之寬頻可變增益放大器與功率放大器設計
No Thumbnail Available
Date
2023
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
隨著全球進入5G通訊的時代,毫米波的研究和發展越來越重要。其中毫米波所擁有的優勢為高速傳輸速率、較寬的頻寬和較低的延遲,因此,毫米波的運用變成眾人的發展目標。本論文將分別使用90-nm互補式金屬氧化物半導體製程和65-nm互補式金屬氧化物半導體製程,來實現主頻為28 GHz的寬頻增益放大器與寬頻功率放大器。第一個電路為28 GHz寬頻增益放大器,使用兩極皆為疊接組態增加整體的增益,同時使用第一級電流控制架構和基極偏壓技術,來達成較寬高的可變增益範圍,在可變增益範圍維持的前提下,使用共振腔及相位反轉技術達到低相位差。在這顆電路中,實現27 GHz~40 GHz的頻寬,增益皆大於16 dB,可變增益範圍皆可達到6.7,而相位差則低於5度。第二個電路為28 GHz寬頻功率放大器,利用兩級串接的方法增加電路的增益,同時利用變壓器來當作匹配網路和功率結合的元件,第二級放大器採用F類來提高效率。當操作頻率為28GHz時,功率增益(Power gain)為25.588 dB,飽和輸出功率(Psat)為16.558 dBm,最大功率附加效率Peak PAE約為44.821 %,1-dB增益壓縮點之輸出功率(OP1dB)約為12.941 dBm,整體靜態電流約為15.64 mA,功率消耗為18.768 mW。
As the world enters the 5G communication, the research and development of millimeter-wave technologies have become increasingly important. A millimeter-wave band offers advantages such as high data-rate, wider bandwidth, and lower latency, making it a prominent focus of development. In this paper, we use 90-nm and 65-nm CMOS process to design two amplifiers centered at the frequency of 28-GHz, They are a broadband variable gain amplifier and broadband power amplifier.The first circuit is a 28-GHz broadband variable gain amplifier. In this circuit, we designed with a cascode topology in both stages to increase gain. The current streeing is added in first satge and used body bias to achieve a wide variable gain range. Additionally, LC resonant and phase inversion are utilized to minimize phase variation while maintaining the variable gain range. The circuit achieve a bandwidth from 27-GHz to 40-GHz, with the gain of more than 16 dB, and a variable gain range greater than 6.7. Finally, the phase difference is below 5 degrees.The second circuit is a 28-GHz broadband power amplifier. We designed with two-stage to increase the gain in this circuit. The transformer plays a role in matching network and power combining. The second-stage is class-F amplifier to improve efficiency. When operating at 28GHz, the power gain is 25.588 dB, the saturated output power is 16.558 dBm, the peak PAE is 44.821%, and the output power at 1-dB gain compression point is 12.941 dBm. The current is 15.64 mA, and the power consumption is 18.768 mW.
As the world enters the 5G communication, the research and development of millimeter-wave technologies have become increasingly important. A millimeter-wave band offers advantages such as high data-rate, wider bandwidth, and lower latency, making it a prominent focus of development. In this paper, we use 90-nm and 65-nm CMOS process to design two amplifiers centered at the frequency of 28-GHz, They are a broadband variable gain amplifier and broadband power amplifier.The first circuit is a 28-GHz broadband variable gain amplifier. In this circuit, we designed with a cascode topology in both stages to increase gain. The current streeing is added in first satge and used body bias to achieve a wide variable gain range. Additionally, LC resonant and phase inversion are utilized to minimize phase variation while maintaining the variable gain range. The circuit achieve a bandwidth from 27-GHz to 40-GHz, with the gain of more than 16 dB, and a variable gain range greater than 6.7. Finally, the phase difference is below 5 degrees.The second circuit is a 28-GHz broadband power amplifier. We designed with two-stage to increase the gain in this circuit. The transformer plays a role in matching network and power combining. The second-stage is class-F amplifier to improve efficiency. When operating at 28GHz, the power gain is 25.588 dB, the saturated output power is 16.558 dBm, the peak PAE is 44.821%, and the output power at 1-dB gain compression point is 12.941 dBm. The current is 15.64 mA, and the power consumption is 18.768 mW.
Description
Keywords
可變增益放大器, 電流控制架構, 基極偏壓, 功率放大器, F類放大器, 共振腔, 相位反轉, 變壓器, 二級串接, Variable Gain Amplifier, Current Steering, Body Bias, Power Amplifier, Class-F, Complementary Metal Oxide Semiconductor, LC resonant, phase compensation, transformer, two-stage cascode