從跨領域觀點探索科學學習的認知負荷 – 機制,即時偵測,與適性教學

No Thumbnail Available

Date

2013-07-31

Authors

葉庭光
曾元顯
李柏磊
張俊彥
李銘仁

Journal Title

Journal ISSN

Volume Title

Publisher

行政院國家科學委員會

Abstract

在科學學習過程中,學生必須運用多重感官、多種高層次能力來解決問題,這些 能力會消耗相當多認知資源。但是,人類有限的工作記憶,限制了我們在學習新 事物、解決科學問題過程中,可以運用的認知資源。當學習者的認知資源超載 (overload)時,學習也會受到影響。認知負荷理論提供了研究者在設計教學活動 時,有效降低學習者認知負荷的方向,也因此成為近年來教育心理學與科學教育 的重要學習理論。目前,測量認知負荷主要依據學習者主觀的自我判斷,並無客 觀工具診斷學習者的負荷,因此,如何有效而客觀評估學習者感受到的認知負荷, 是一個重要的議題。此外,由同卵雙生的研究指出,人類的工作記憶主要是受到 遺傳的影響(70%),如何將遺傳與神經生理、學習環境的互動結果,納入為適性 化教學的依據,也是國際間教育神經科學領域(Educational neuroscience)的重要新 興議題。本研究主要目標有三:(1)探索認知負荷的內在機制。(2)發展個人化的 腦波儀,可即時偵測認知負荷,並運用於課堂。(3)透過對認知負荷機制的了解, 設計相關適性化學習。 我們將運用分子生物學技術、神經科學技術、以及認知心理學測驗,分析受試者 特質,並運用生物資訊技術以及類神經網路運算,預測認知負荷的機制。我們將 透過事件相關非同步/同步律動(ERD/ERS)以及時頻共同訊息法(TFCMI),設計出 可以即時偵測認知負荷的單通道個人化腦波儀。藉由對認知負荷機制的了解,我 們將依據認知負荷機制,設計相關的適性化教學,並運用腦波即時偵測認知負荷, 了解學生的學習狀況。我們希冀藉由跨領域的整合,讓研究者深入了解與認知負 荷有關的科學學習機制,提升學生的科學學習。
Cognitive load theory, which suggests that instructional materials should be designed with the goal of reducing unnecessary cognitive load, has been regarded as one of the most influential to science education. The proposed project aims to (1) explore the mechanism of cognitive load, (2) develop one-channel personal EEG detector to real-time monitor individual perceived cognitive load, and (3) develop adaptive instruction based on the mechanism of cognitive load to help learners maintain an optimal level of load. Molecular biology technology (such as next generation sequencing and real-time PCR), neuroimaging technology (such as fMRI, EEG), cognitive abilities batteries, and bioinformation/computer science technology will be utilized to explore the mechanism of cognitive load. Event-relation de-synchronization /synchronization (ERD/ERS) and temporal frequency cross mutual information (TFCMI) technology will utilized to develop personal one-channel EEG detector to real-time monitor individual cognitive load. We will also try to develop collaborative and adaptive instruction based on the mechanism of cognitive load to reduce learners perceived cognitive load and enhance learning outcome. We look forward to sharing our findings on integrating researchers from different fields in order to explore the mechanism of cognitive load, developing a real-time personal cognitive load detector, as well as developing a valid adaptive instruction base in which students'learning can be improved.

Description

Keywords

Citation

Collections

Endorsement

Review

Supplemented By

Referenced By