油壓與傳統阻力訓練器材之動力學分析
No Thumbnail Available
Date
2010
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
阻力訓練是肌力訓練很重要的環節,訓練器材的種類也有很多種,一般常見的是傳統式阻力訓練器材,近期國內也引進油壓式阻力訓練器材,並自行研發油壓缸。目的:旨在深入探討傳統式與油壓式兩種阻力訓練器材在動力學上有何異同,並提供訓練方法上的建議。方法:本研究分兩部分。首先進行油壓缸定量算出在三種油壓缸移動速度下傳統式器材所需的相對重量,接著請受試者進行相同負荷的油壓式與傳統式阻力訓練機,收取操作過程中的肌電與力量值。結果:向心期皆是兩種器材的主要訓練期,經過量化後傳統式的力量值與肌電值皆高於油壓式,但最大力量值與最大出力率卻是油壓式較高。而在離心期的部份,傳統式的力量值與肌電值較高,原因在於阻力源不同使得傳統式會使作用肌產生離心收縮,油壓式則否。結論:未來的油壓式阻力訓練器材可依本研究方法進行定量掌握訓練強度應用在訓練上,而本研究建議油壓式訓練應著重於向心期訓練作用肌;而傳統式除了向心期的訓練,在離心期可將速度降低使作用肌進行離心訓練,因此傳統式較容易產生肌肉痠痛,油壓式則否。此外油壓式還具備了高安全性的特點,更適合肌力較弱的族群,因此建議傳統式較適合青壯年或對傳統式器材較熟悉的使用者。
The resistance training is very important in strength training. The most used training equipments in strength training are traditional resistance equipments (TRE). The hydraulic resistance equipments (HRE) have been imported to Taiwan recently; therefore we have more options to choose the training devices. Purpose:The purpose of this study was to investigate the differences on muscle activation when using HRE and TRE in order to provide the recommendations for training utilizations. Methods:This is a twofold study. First, we built an index by quantifying the hydraulic cylinder and to find the relative weight of the plates. Second, the forces and the electromyography (EMG) of biceps brachii, triceps brachii, rectus femoris, and biceps femoris were collected when the subjects used both two types of training equipments. Results:The concentric phase is the main training period in both equipments. We found the forces and the EMG are higher when using TRE than using HRE in the concentric phase, but the max force and the max power slope are higher in the HRE group. In eccentric phase, TRE group shows higher force and EMG than HRE. It might be that the muscle should activate to resist the weight of plates in the eccentric phase when using TRE, but not HRE. Conclusions:Our quantified index can be used on strength training when using HRE. HRE training instructions should focus on concentric phase. Furthermore, we should slow down the movement in eccentric phase when using TRE to avoid delayed onset muscle soreness. Because of the feature of HRE, dual-concentric training, it is suitable for disable or strengthless groups. Otherwise, TRE is suitable for the people who are familiar with.
The resistance training is very important in strength training. The most used training equipments in strength training are traditional resistance equipments (TRE). The hydraulic resistance equipments (HRE) have been imported to Taiwan recently; therefore we have more options to choose the training devices. Purpose:The purpose of this study was to investigate the differences on muscle activation when using HRE and TRE in order to provide the recommendations for training utilizations. Methods:This is a twofold study. First, we built an index by quantifying the hydraulic cylinder and to find the relative weight of the plates. Second, the forces and the electromyography (EMG) of biceps brachii, triceps brachii, rectus femoris, and biceps femoris were collected when the subjects used both two types of training equipments. Results:The concentric phase is the main training period in both equipments. We found the forces and the EMG are higher when using TRE than using HRE in the concentric phase, but the max force and the max power slope are higher in the HRE group. In eccentric phase, TRE group shows higher force and EMG than HRE. It might be that the muscle should activate to resist the weight of plates in the eccentric phase when using TRE, but not HRE. Conclusions:Our quantified index can be used on strength training when using HRE. HRE training instructions should focus on concentric phase. Furthermore, we should slow down the movement in eccentric phase when using TRE to avoid delayed onset muscle soreness. Because of the feature of HRE, dual-concentric training, it is suitable for disable or strengthless groups. Otherwise, TRE is suitable for the people who are familiar with.
Description
Keywords
油壓阻力, 肌力訓練, 動力學, hydraulic resistance, strength training, dynamics