都會白鼻心的繁殖記錄、活動範圍與活動模式

No Thumbnail Available

Date

2023

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

隨著都市用地急劇擴張,許多動植物逐漸適應並進駐都市地區。良好的都市野生動物管理政策將有助建立生物多樣性友善的都市,保障居民福利之餘亦提供環境教育機會。白鼻心是近年來頻繁出沒都市之哺乳動物,然而我們對其在都市的生存現況所知甚少。本研究第一部分分析台中市野生動物保育學會的歷年救傷資料,顯示近10年來白鼻心在都市地區的數量顯著增多,甚至不少個體成功在人口稠密的地區築窩繁殖,且築窩地點的地景組成有超過90%為人工建物。都市的白鼻心繁殖季節為春季至秋季,並以春季為主要的繁殖季節。白鼻心成體的主要死因為犬隻攻擊和車禍,而幼獸的主要救傷原因為母獸遺棄。犬隻攻擊和車禍數量不僅居高其首,其死亡率更達百分之百。了解白鼻心於都市的習性與棲地選擇將有助於建立有效的野生動物管理政策,進而減少都市白鼻心與人之間的衝突。因此本研究的第二部分在台北市蟾蜍山一帶設立研究樣區,架設自動相機監測白鼻心於淺山及相鄰社區的活動。同時利用無線電發報器追踪四隻白鼻心,以了解都市地區白鼻心的活動範圍、活動模式與所偏好之棲地。從自動相機的資料來看,午夜為都市白鼻心最活躍的時間,其活動高峰落在22:00到03:00之間。以最小凸多邊形及核密度分析方式計算白鼻心的活動範圍,得出白鼻心的平均活動範圍面積分別為11.44 ± 3.23公頃及17.87 ± 5.34公頃,遠小於過去研究於對自然環境族群進行的追踪結果。此外,追踪結果顯示,白鼻心於白天的活動範圍完全局限於夜晚的活動範圍內,且一天之間僅使用總活動範圍的一小部分。個體間的活動範圍有著高度重疊。建築物為白鼻心活動範圍中最常見的地景組成,且有兩隻個體顯著偏好利用建築物及其周遭的環境。所有白鼻心皆顯著驅避道路及裸露地,顯示道路是都市棲地破碎化的主因。本研究提供了白鼻心入住都市環境的證據及其面臨的威脅,此資訊將對建立野生動物管理政策有所助益。為減低都市白鼻心的死亡率及預防伴侶動物與野生動物之間密切接觸可能導致的傳染疾病,遊蕩犬貓的管理刻不容緩。同時也應向民眾傳遞與野生動物接觸時的正確行為,維護當地居民和野生動物的安全。
With the rapid expansion of urban areas and the increasing number of species adapting to urban environments, there is a global trend to prioritize urban wildlife conservation and urban residents’ welfare. In recent years, population of the masked palm civets (Paguma larvata) has increased in several highly populated cities in Taiwan. In chapter 1, I analyzed rescue data from 2010 to 2021 in Taichung, one of the largest cites in central Taiwan. The records revealed a steady growth in the civet population since 2017. Breeding season lasts from spring to autumn, with primary mating season in spring. Interestingly, urban civets were observed to inhabit locations where over 90% of the land cover were built area, and even nest inside buildings. The main cause of mortality in adults was dog attack followed by car accident, while the main rescue reason for young civets was orphaned. The results demonstrated the need for new civet conservation and management policies. However, the behavior of civets in cities remained understudied, hindering the establishment of effective changes. In chapter 2, I set up a study site in Taipei city where landscape features comprised of human modified secondary lowland forest area, residential area, local schools and universities. Infrared cameras were set to monitor civets’ activity, and four civets were radio-tracked to identify their home range and habitat preferences. Camera records indicated that civets were most active around midnight, and their activity peak was between 22:00 to 03:00. The mean MCP100 and mean KDE95 of the four civets were 11.44 ha ± 3.23 and 17.87 ha ± 5.34, respectively, which was remarkably smaller compared to previous studies conducted in natural or rural habitats. Home range and core range in day time were mostly nested within those at night. Home ranges highly overlap among individuals. Furthermore, civets often use only a small portion of their home range on a daily basis. Infrastructure was the main habitat type within civet home ranges, and was used at a significantly higher proportion than its availability for two of the studied civets. In contrast, all civets significantly avoided road and bare ground. Overall, this study provided concrete evidences of civets’ adaptation to urban areas, identified threats to their survival, and offered recommendations for wildlife management and public education plans in urban areas. Minimizing future human-wildlife conflicts and promoting harmonious coexistence between both sides will be an important task in wildlife conservation.

Description

Keywords

遊蕩犬隻, 路殺, 都市生態, 野生動物管理, 棲地破碎化, 棲地選擇, free-roaming dog, urban ecology, wildlife management, road-killed wildlife, habitat fragmentation, habitat selection

Citation

Collections

Endorsement

Review

Supplemented By

Referenced By