在整數環中關於矩陣乘法的校正演算法

dc.contributor王弘倫zh_TW
dc.contributorWang, Hung-Lungen_US
dc.contributor.author吳羽倫zh_TW
dc.contributor.authorWu, Yu-Lunen_US
dc.date.accessioned2023-12-08T08:02:36Z
dc.date.available2022-08-30
dc.date.available2023-12-08T08:02:36Z
dc.date.issued2022
dc.description.abstract給定三個 n × n 的整數矩陣 A, B, 和 C,其中 C 與 A × B 的乘積有最多 k 個元素相異。我們研究如何有效率的修正整數矩陣乘積的錯誤,並找到了時間複雜度為 O(k^0.5 × n^2) 的決定性演算法。另外,在執行演算法的過程中所須要處理的數字最大值為 O(n^2α^2 + nα),其中 α 是 A, B, 和 C 的元素的最大值。zh_TW
dc.description.abstractGiven three n × n matrices A, B, and C with C containing at most k entries differfrom A × B, we investigate how to find the correct matrix products over the ring overintegers efficiently and provide a deterministic algorithm running in O(k^0.5 × n^2) time. In addition, the values need to manipulate during the algorithm are O(n^2 × α^2 + n^α), where α is the largest value of entries in A, B, and C.en_US
dc.description.sponsorship資訊工程學系zh_TW
dc.identifier60947037S-42071
dc.identifier.urihttps://etds.lib.ntnu.edu.tw/thesis/detail/ae513768b495cb277b0b9844dbc21781/
dc.identifier.urihttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/121575
dc.language英文
dc.subject矩陣乘法zh_TW
dc.subject矩陣乘積zh_TW
dc.subject校正演算法zh_TW
dc.subject生成元zh_TW
dc.subjectmatrix multiplicationen_US
dc.subjectmatrix producten_US
dc.subjectcorrectionen_US
dc.subjectgroup generatoren_US
dc.title在整數環中關於矩陣乘法的校正演算法zh_TW
dc.titleCorrecting Matrix Products over the Ring of Integersen_US
dc.typeetd

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
202200042071-104380.pdf
Size:
392.98 KB
Format:
Adobe Portable Document Format
Description:
etd

Collections