在整數環中關於矩陣乘法的校正演算法

No Thumbnail Available

Date

2022

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

給定三個 n × n 的整數矩陣 A, B, 和 C,其中 C 與 A × B 的乘積有最多 k 個元素相異。我們研究如何有效率的修正整數矩陣乘積的錯誤,並找到了時間複雜度為 O(k^0.5 × n^2) 的決定性演算法。另外,在執行演算法的過程中所須要處理的數字最大值為 O(n^2α^2 + nα),其中 α 是 A, B, 和 C 的元素的最大值。
Given three n × n matrices A, B, and C with C containing at most k entries differfrom A × B, we investigate how to find the correct matrix products over the ring overintegers efficiently and provide a deterministic algorithm running in O(k^0.5 × n^2) time. In addition, the values need to manipulate during the algorithm are O(n^2 × α^2 + n^α), where α is the largest value of entries in A, B, and C.

Description

Keywords

矩陣乘法, 矩陣乘積, 校正演算法, 生成元, matrix multiplication, matrix product, correction, group generator

Citation

Collections

Endorsement

Review

Supplemented By

Referenced By