長葉木薑子杯狀蟲癭捕光複合體分析

No Thumbnail Available

Date

2016

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

生物之間有許多交互作用,而造癭生物與其寄主植物之間關係是相當特別有趣的例子,到目前為止兩者演化的過程還未被釐清。癭為造癭生物在其寄主植物上產卵、取食等造成的不正常組織。而癭組織多半呈現綠色或紅色,過去研究多為形態、組織學¬¬¬¬、分類、DNA、光合作用率等方面,而光合作用蛋白相關的研究相對較少。 本實驗研究物種長葉木薑子(Litsea acuminata)為台灣樟科(Lauraceae)木薑子屬(Litsea sp.)植物,分布於海拔400至2000公尺,而位於台灣北部陽明山國家公園二子坪步道之植株上有為數不少癭蚋(Bruggmanniella sp.)所產之杯狀(cup-shaped)蟲癭,蟲癭發生期為冬季十月至隔年三月之間,初期為綠色,如杯子狀,中間具凹陷,晚期轉為紫紅色,蟲癭成熟。 本研究利用西方墨點法(Western Blot)進行蟲癭之光系統Ⅰ和光系統Ⅱ之捕光蛋白複合體(Light-harvesting complexes)以及總蛋白含量檢測,並與無癭葉與有癭葉進行比較,以了解是否於杯狀蟲癭相較於無癭葉之光合作用蛋白具有含量較低及部分缺失之情形,並釐清是否蟲癭的產生也會對被造癭之葉片產生影響而使受感染的葉片造成本質上的改變。 結果顯示蟲癭的總蛋白含量相較於無癭葉減少約50%,而有癭葉與無癭葉則無顯著差異。光系統I捕光複合體分析顯示蟲癭所含的CPIA、RCIA、RCIB皆較無癭葉低,而在有癭葉上則是沒有檢測到。光系統II捕光複合體分析顯示蟲癭內所含的CP47較無癭葉低,有癭葉同樣沒有檢測到;而Lhcb4、Lhcb5含量由高至低依序為無癭葉、有癭葉、蟲癭。前人研究中顯示無癭葉與有癭葉的光合作用率並無顯著差異,蟲癭自身光合作用率低可能是由於多種捕光複合體缺失所導致,而有癭葉部分捕光複合體受影響的原因則待後續研究進行解析。
There are many interactions between organisms, and gall-induced organisms and their host plant have very special and interesting relationship, but their evolution of process are not clearly until now. Gall is gall-induced organism form abnormal tissues on their host plant by oviposition or feeding, and gall usually appear in green or red color. On the past, there are many research in the morphology, histological, taxonomy, DNA and photosynthesis rate of gall. The photosynthesis relative proteins retain to be studied. In this study, we used Litsea acuminata as material to exam, which is belong to Litsea of Lauraceae, it’s common at low altitude of Taiwan. It is located 400~2,000 m above sea level (asl) in Taiwan. There has many cup-shaped gall induced by cecidomyiidae midges at Erzihping trail of Yangmingshan National Park in north Taiwan. The galls appear on October to March, it appears green at the beginning, turn dark red as they mature and the insect eclosion and flying out. We used Western Blot to detect the light-harvesting complexes and the concentration of total protein of non-galled leaves, galled leaves and galls, and compare the relative abundance of them. And to clarify if the gall-induction will influence the galled leaves. The result showed that the total protein of gall has lower than non-galled leaves about 50%, and the galled leaves are not different from non-gall leaves. On the analyzed of light harvesting complexes of photosystem I, there are lower content of CPIA, RCIA and RCIB on the galls than non-galled leaves, and didn’t detect on galled leaves. On the analyzed of light harvesting complexes of photosystem II, the protein of CP47 on the galls was lower than non-galled leaves, and didn’t detect on galled leaves. The protein content of Lhcb4 and Lhcb5 from high to low are non-galled leaves, galled leaves and galls. On past study, there were not different of photosynthesis rate between non-galled leaves and galled leaves. The photosynthesis rate was lower on the gall may due to the deficiency of light harvesting complexes. The reason of lower content of light harvesting complexes on the galled leaves retain to be study in the future.

Description

Keywords

捕光蛋白複合體, 光合作用, 蟲癭, 長葉木薑子, gall, light harvesting complex protein, Litsea acuminata, photosynthesis

Citation

Collections