理學院

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/3

學院概況

理學院設有數學系、物理學系、化學系、生命科學系、地球科學系、資訊工程學系6個系(均含學士、碩士及博士課程),及科學教育研究所、環境教育研究所、光電科技研究所及海洋環境科技就所4個獨立研究所,另設有生物多樣性國際研究生博士學位學程。全學院專任教師約180人,陣容十分堅強,無論師資、學術長現、社會貢獻與影響力均居全國之首。

特色

理學院位在國立臺灣師範大學分部校區內,座落於臺北市公館,佔地約10公頃,是個小而美的校園,內含國際會議廳、圖書館、實驗室、天文臺等完善設施。

理學院創院已逾六十年,在此堅固基礎上,理學院不僅在基礎科學上有豐碩的表現,更在臺灣許多研究中獨占鰲頭,曾孕育出五位中研院院士。近年來,更致力於跨領域研究,並在應用科技上加強與業界合作,院內教師每年均取得多項專利,所開發之商品廣泛應用於醫、藥、化妝品、食品加工業、農業、環保、資訊、教育產業及日常生活中。

在科學教育研究上,臺灣師大理學院之排名更高居世界第一,此外更有獨步全臺的科學教育中心,該中心就中學科學課程、科學教與學等方面從事研究與推廣服務;是全國人力最充足,設備最完善,具有良好服務品質的中心。

在理學院紮實、多元的研究基礎下,學生可依其性向、興趣做出寬廣之選擇,無論對其未來進入學術研究領域、教育界或工業界工作,均是絕佳選擇。

Browse

Search Results

Now showing 1 - 4 of 4
  • Item
    從概念改變理論探究建模教學對學生力學心智模式與建模能力之影響
    (2009) 張志康; Chang, Chih-Kang
    本研究以Vosniadou、Chi與diSessa (簡稱VCD) 的綜合理論建立「新-心智模式架構」,嘗試整合三位學者的觀點,從多元面向探討「影響概念改變的因素」及「心智模式的類型與演變」。研究目的主要是以VCD綜合理論探討學生概念運作的機制及其心智模式的一致性,並從分析結果中針對VCD的爭議,提出另一個思考的面向。此外,為了刺激學生們對力學概念的活化,研究者採用近十多年來科教界極力提倡的建模教學,分析不同建模教學對學生力學概念與建模能力之影響。在研究工具方面,本研究使用Ioannides& Vosniadou (2001)的「力學概念晤談測驗」,配合建模能力分析指標(邱美虹,2008;張志康與邱美虹,2009)所設計的「力學建模教學」與「力學建模能力測驗」,探究前述之研究目的。 本研究共分四個階段進行:第一階段,研究者分析學齡前、國小、國中與高中學生的力學心智模式架構,在各分層架構內的運作情況與連繫關係。研究結果顯示,(一)跨年級學生心智模式的來源源自「特定領域(Domain-specific)」的人數比例有隨年級的增加而逐漸增長的趨勢。(二)持有迷思預設的人數比例,有隨年級的增加而逐漸減少的趨勢。(三)概念使用的情況,有隨年級的增加而逐漸傾向過程屬性的趨勢。(四)心智模式的類別,有隨年級的增加而逐漸傾向科學模式的趨勢。(五)以全體學生來看,各分層架構間的連繫關係,其Φ相關值達顯著。 第二階段,研究者分析學生力學心智模式的穩定一致性。研究結果顯示,48名學生在未接受力學相關教學前後,其力學心智模式的穩定一致性為83%;此外,48名學生在力學概念晤談測驗各類試題中所使用的力學概念類別一致性為85%。因此,學生的心智模式具有一定程度的一致性,與Vosniadou的觀點相符。 第三階段,研究者分析學齡前、國小、國中與高中學生在經過電腦建模、類比建模與思考建模教學前後,其力學概念改變與建模能力提升的情形。研究結果顯示,(一)三種建模教學對於學生力學概念改變與建模能力的提升,都有顯著的效果(t力學概念=6.424, p力學概念<.01; t建模能力=11.795, p建模能力<.01)。(二)在力學概念改變方面,三種建模教學的效果無顯著差異,而跨年級學生的表現有顯著差異(p<.05),年級越高的學生,其後測表現越佳。(三)在建模能力提昇方面,以思考建模教學最差,而電腦與類比建模教學的效果與思考建模教學間達顯著差異(p<.05);而在跨年級學生的表現上,國中與高中學生其後測表現顯著優於國小與學齡前學生。因此,建模教學可促進學生的力學概念獲得更多的過程屬性,亦可提升學生的建模能力;唯不同年級與不同教學法間,仍有差異存在。 第四階段,研究者分析不同建模教學對跨年級學生力學概念與建模能力的影響。研究結果顯示,(一)電腦建模教學對於國小與國中學生力學概念改變的幫助較大,而對國中與高中學生建模能力的提升較佳。(二)類比建模教學對國小與高中學生力學概念改變的幫助較大,而對國中與高中學生建模能力的提升較佳。(三)思考建模教學對國中與高中學生力學概念改變的幫助較大,而對國中與高中學生建模能力的提升較佳。(四)三種建模教學對於學生力學概念的改變無顯著的差異,但對建模能力的提升有顯著的差異;其中,電腦與類比建模教學對跨年級學生均合適,而思考建模教學較適合於國中、高中學生。 綜上所述,以「新-心智模式架構」解釋概念運作的機制,不僅顧及多面向的研究結果,在實徵研究上亦可重新審視VCD等人的理論觀點,針對跨年級學生力學心智模式架構的差異情形進行多元的探討。此外,研究者基於建模能力分析指標,分析跨年級學生的各項建模能力,藉以探討不同年級學生經建模教學後的學習成效;結果發現,國中與高中學生建模能力的學習成效較佳,若能在中學課室中融入建模教學,將有助於學生們對力學概念的學習。
  • Item
    探究七年級在「光學」建模教學的心智模式改變與建模能力表現
    (2009) 楊宜雯; I-Wen Yang
    本研究採用Treagust (1988) 所提出的雙層診斷測驗探究七年級學生有關於「光與視覺」、「光的行進」、「光的反射與平面鏡成像」、「光的折射」四部分在教學前後的概念理解情形以及心智模式類型的演變。本研究對象共分為兩組,分別為建模教學實驗組與一般教學控制組,兩組各為37人。本研究的實驗組教材是針對國中階段的光學概念,以Halloun (1996) 提出的科學建模歷程重新設計適合的建模教學方案,並發展光學建模能力晤談問卷,透過晤談與測驗收集資料,整理比較兩組學生在教學前後對於光學的另有概念分布、學習成效、正確性與一致性、各子概念的心智模式,以及兩組在教學後的建模能力,並藉由情意問卷了解兩組對於不同教學的觀感。研究結果摘述如下: (1)本研究學生在教學前後所具有的光學另有概念,與國內外的相關研究相似。在「光與視覺」與「光的本質」部分教學前就已具有正確的概念;在「光的反射」部分經由學習後仍持有許多錯誤的概念,對於學生是難以學習;在「光的折射」部分經由學習後就能夠從錯誤的概念轉變成科學概念,對於學生是易經由學習而獲得的概念。 (2)從學習成效結果顯示建模教學較有助於學生在「光的反射」與「光的折射」部分的學習,而傳統教學較有助於學生在「光與視覺」部分的學習。 (3)從正確性與一致性的分布圖,發現兩組學生在教學前後,不斷地經由精緻化與修正對光學的概念,學生的心智模式會趨向一致且正確的科學模式發展。 (4)學生在前測、後測以及延宕測驗的主要心智模式結果如下:「光與視覺」為科學模式/科學模式/科學模式;「光的本質」為科學有瑕疵模式/科學有瑕疵模式/科學有瑕疵模式;「光的反射」為混合模式/科學+傳送模式/科學+傳送模式;「光的折射」為科學有瑕疵模式/科學有瑕疵模式/科學有瑕疵模式。 (5)從晤談結果分析,不論在實驗組獲控制組,高學習成就群的建模能力表現>中學習成就群的建模能力表現>低學習成就組的建模能力表現,顯示學習成就與建模能力是有相關的,呼應Grosslight (1991) 提到想要學好科學,必須先提升建模能力。 (6)實驗組學生對於建模教學都保持正向的態度,喜歡教師以多元的方式教學,尤其是實驗的操作最能讓學生印象深刻且幫助理解。 本研究嘗試以科學建模歷程為基礎,再依照每個歷程的目標設計教學活動,並加入許多實驗與體驗活動,建構一個學生主動建構知識的學習環境,以雙層診斷測驗、建模能力晤談問卷以及學習情意問卷了解學生在認知、情意以及技能三方面的表現,整體而言,以建模為基礎的教學有效地幫助學生學習光學概念。
  • Item
    探討建模教學對於八年級學生學習物質粒子概念之學習成效與建模能力之影響
    (2010) 賴俊文
    本研究旨在探討建模教學對八年級學生學習物質粒子概念之影響,希望藉由建模教學提升學生物質粒子概念學習成效與建模能力。研究對象為92位台北市某國中八年級學生,研究對象依據教學方式共分為三組,其分別為「靜態模型講述組」、「動態模型講述組」與「動態模型建模組」,利用研究者自行發展測驗工具分析學生學習成效,並利用建模能力評估指標(MAAI)分析晤談學生之建模能力表現。研究結果顯示: 1.三組學生於物質粒子概念後測成績比較(F=15.49,p=.000<0.001)或總結性評量比較(F=4.663,p=.012<.05)均達顯著差異,再經由Scheffe’s事後多重比較分析,顯示建模教學有助於學生物質粒子概念建立。 2.三組學生於動態評量部分,除動態評量(Ⅱ)未達顯著差異外(F=0.965,p=.385>.05),其餘三次動態評量比較結果均達顯著差異(F=4.270,p=.017<.05; F=4.101,p=.020<.05; F=4.577,p=.013<.05),再經由Scheffe’s事後多重比較分析,顯示建模教學有助於學生在學習過程中,對物質粒子概念的建立。 3.研究結果亦顯示,不同的教學策略對於學生建立原子結構心智模式演變途徑並不相同。靜態模型講述教學主要途徑為:實心球原子模型→拉塞福原子模型→拉塞福原子模型;動態模型講述教學與動態模型建模教學主要途徑則為:實心球原子模型→波耳原子模型→波耳原子模型,顯示動態模型較能建立學生波耳原子結構模型,而學生所建立的原子結構心智模型愈接近科學模型,學習成效愈好。 4.三組學生於物質粒子建模能力之表現,研究結果顯示,三組學生於模型效化、模型重建與整體建模能力等三個方面均有顯著差異(p=.033<.05),顯示建模教學有助於提升學生整體之建模能力,特別是在模型效化與模型重建。
  • Item
    探討建模教學對於密度及水溶液概念的學習成效
    (2019) 胡琇惠; Hu, Siou-Huei
    科學家利用模型思考,解決問題。在科學課程中,教師利用模型,幫助孩童認識世界。學生透過模型了解理論,教師可運用不同的表徵與模型,幫助學生探索與認識自然。本研究依課程內容可分為密度及水溶液兩單元,課程設計以邱美虹(2016)提出的建模歷程為架構,其過程包含八個步驟:分別為模型選擇、模型建立、模型效化、模型分析、模型應用、模型調度、模型修正、模型重建。 本研究主要探討在進行建模教學後,對於學生在密度與水溶液的學習成效上是否有幫助。本研究分為兩個研究主題:研究一:探討建模教學對於「密度概念」;研究二:探討建模教學對於「水溶液概念」學習成效。研究對象為台北市某國中八年級四班學生進行研究,將四班隨機分成建模教學組與一般教學組,建模教學組學生有55位,一般教學組學生有54位,共109位。研究工具分為量化與質性工具,量化工具包含密度及水溶液概念之前測、後測與延宕測驗、認知負荷問卷,質性工具包含學生晤談資料。概念測驗工具由兩位具有化學背景的大學教授,與一位資深國中教師建立專家效度,且密度與水溶液試卷信度為0.81及0.79。針對學生測驗結果,將以SPSS進行t-test及共變數分析(ANCOVA) 整體研究結果顯示:(1)建模教學可以幫助學生科學概念的學習與問題解決,其中在密度概念(F=25.1,p<0.001)及水溶液概念(F=13.83,p<0.001)中均達顯著差異。(2)建模教學最能幫助中能力學生學習科學概念,而在較複雜的科學概念上,對低能力學生幫助較低,但對於高能力學生則幫助較大。(3)建模教學運用模型思考,幫助學生學習與解決問題。但由於過程中學生要學習科學概念與建模歷程框架,相較於一般傳統教學,建模教學更容易造成個體的認知負荷,其中在密度概念整體認知負荷(t=2.66,p=0.009,df=89)及水溶液概念整體認知負荷(t=2.58,p=0.01,df=84)中均達顯著差異。