探究七年級在「光學」建模教學的心智模式改變與建模能力表現
No Thumbnail Available
Date
2009
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
本研究採用Treagust (1988) 所提出的雙層診斷測驗探究七年級學生有關於「光與視覺」、「光的行進」、「光的反射與平面鏡成像」、「光的折射」四部分在教學前後的概念理解情形以及心智模式類型的演變。本研究對象共分為兩組,分別為建模教學實驗組與一般教學控制組,兩組各為37人。本研究的實驗組教材是針對國中階段的光學概念,以Halloun (1996) 提出的科學建模歷程重新設計適合的建模教學方案,並發展光學建模能力晤談問卷,透過晤談與測驗收集資料,整理比較兩組學生在教學前後對於光學的另有概念分布、學習成效、正確性與一致性、各子概念的心智模式,以及兩組在教學後的建模能力,並藉由情意問卷了解兩組對於不同教學的觀感。研究結果摘述如下:
(1)本研究學生在教學前後所具有的光學另有概念,與國內外的相關研究相似。在「光與視覺」與「光的本質」部分教學前就已具有正確的概念;在「光的反射」部分經由學習後仍持有許多錯誤的概念,對於學生是難以學習;在「光的折射」部分經由學習後就能夠從錯誤的概念轉變成科學概念,對於學生是易經由學習而獲得的概念。
(2)從學習成效結果顯示建模教學較有助於學生在「光的反射」與「光的折射」部分的學習,而傳統教學較有助於學生在「光與視覺」部分的學習。
(3)從正確性與一致性的分布圖,發現兩組學生在教學前後,不斷地經由精緻化與修正對光學的概念,學生的心智模式會趨向一致且正確的科學模式發展。
(4)學生在前測、後測以及延宕測驗的主要心智模式結果如下:「光與視覺」為科學模式/科學模式/科學模式;「光的本質」為科學有瑕疵模式/科學有瑕疵模式/科學有瑕疵模式;「光的反射」為混合模式/科學+傳送模式/科學+傳送模式;「光的折射」為科學有瑕疵模式/科學有瑕疵模式/科學有瑕疵模式。
(5)從晤談結果分析,不論在實驗組獲控制組,高學習成就群的建模能力表現>中學習成就群的建模能力表現>低學習成就組的建模能力表現,顯示學習成就與建模能力是有相關的,呼應Grosslight (1991) 提到想要學好科學,必須先提升建模能力。
(6)實驗組學生對於建模教學都保持正向的態度,喜歡教師以多元的方式教學,尤其是實驗的操作最能讓學生印象深刻且幫助理解。
本研究嘗試以科學建模歷程為基礎,再依照每個歷程的目標設計教學活動,並加入許多實驗與體驗活動,建構一個學生主動建構知識的學習環境,以雙層診斷測驗、建模能力晤談問卷以及學習情意問卷了解學生在認知、情意以及技能三方面的表現,整體而言,以建模為基礎的教學有效地幫助學生學習光學概念。
A study on the Seventh-grade students’ Mental-Model Change and their Modeling Ability Performance on learning “Optics” concepts with the use of Model-Based Instruction. Abstract This research adopted Teargust’s (1988) “two-tier diagnose test” design to investigate the seventh grader students’ changes of mental models and their modeling ability of learning the concepts of “light and vision”, “nature of light ”, “reflection”, and “refraction”. The participants were 74 7th grade students who were divided into two groups-“model-based teaching (experimental) group” and “traditional teaching (controlled) group”. The major findings of this research were summarized as follows: (1)The students had similar alternative conceptions about optics as the students in other study (e.g., Fetherstonhaugh& Treagust, 1992; Galili & Hazan, 2000). They held partially correct conceptions of “light and vision” and “nature of light” before instruction. However, they still have some misconceptions of “reflection” even after formal teaching. Compared to other concepts, the concept of “refraction” is easier to acquire after instruction. (2)The research findings revealed that model-based teaching was highly helpful for learning of “reflection” ”(t(72)=1.72, p=.05) and “refraction”(t(72)=1.77, p=.04), while traditional teaching performed well on “light and vision”. (3)Via enrichment and revision processes, the student’s mental model became towards to coherent and correct scientific model. (4)The evolution of mental models in the pretest, posttest, and delayed test were as follows: for “light and vision” concept, scientific model scientific model scientific model; for “nature of light ” concept- scientific flaw model scientific flaw model scientific flaw model; for “reflection” – mixed model scientific transmission model scientific transmission model; and for “refraction”- scientific flaw model scientific flaw model scientific flaw model. (5)Based upon the interview data, the researcher found that the students with higher score in optics test items have high scores in modeling ability items. (6)The students expressed a positive attitude toward modeling instruction. The design of the teaching experiments especially impressed the students and help them understand the optics concepts better. Overall, model-based teaching helps the students learn the Optical concepts more efficiently than the traditional approach.
A study on the Seventh-grade students’ Mental-Model Change and their Modeling Ability Performance on learning “Optics” concepts with the use of Model-Based Instruction. Abstract This research adopted Teargust’s (1988) “two-tier diagnose test” design to investigate the seventh grader students’ changes of mental models and their modeling ability of learning the concepts of “light and vision”, “nature of light ”, “reflection”, and “refraction”. The participants were 74 7th grade students who were divided into two groups-“model-based teaching (experimental) group” and “traditional teaching (controlled) group”. The major findings of this research were summarized as follows: (1)The students had similar alternative conceptions about optics as the students in other study (e.g., Fetherstonhaugh& Treagust, 1992; Galili & Hazan, 2000). They held partially correct conceptions of “light and vision” and “nature of light” before instruction. However, they still have some misconceptions of “reflection” even after formal teaching. Compared to other concepts, the concept of “refraction” is easier to acquire after instruction. (2)The research findings revealed that model-based teaching was highly helpful for learning of “reflection” ”(t(72)=1.72, p=.05) and “refraction”(t(72)=1.77, p=.04), while traditional teaching performed well on “light and vision”. (3)Via enrichment and revision processes, the student’s mental model became towards to coherent and correct scientific model. (4)The evolution of mental models in the pretest, posttest, and delayed test were as follows: for “light and vision” concept, scientific model scientific model scientific model; for “nature of light ” concept- scientific flaw model scientific flaw model scientific flaw model; for “reflection” – mixed model scientific transmission model scientific transmission model; and for “refraction”- scientific flaw model scientific flaw model scientific flaw model. (5)Based upon the interview data, the researcher found that the students with higher score in optics test items have high scores in modeling ability items. (6)The students expressed a positive attitude toward modeling instruction. The design of the teaching experiments especially impressed the students and help them understand the optics concepts better. Overall, model-based teaching helps the students learn the Optical concepts more efficiently than the traditional approach.
Description
Keywords
概念改變, 建模能力, 雙層診斷測驗, concept change, modeling ability, two-tier diagnose test