理學院

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/3

學院概況

理學院設有數學系、物理學系、化學系、生命科學系、地球科學系、資訊工程學系6個系(均含學士、碩士及博士課程),及科學教育研究所、環境教育研究所、光電科技研究所及海洋環境科技就所4個獨立研究所,另設有生物多樣性國際研究生博士學位學程。全學院專任教師約180人,陣容十分堅強,無論師資、學術長現、社會貢獻與影響力均居全國之首。

特色

理學院位在國立臺灣師範大學分部校區內,座落於臺北市公館,佔地約10公頃,是個小而美的校園,內含國際會議廳、圖書館、實驗室、天文臺等完善設施。

理學院創院已逾六十年,在此堅固基礎上,理學院不僅在基礎科學上有豐碩的表現,更在臺灣許多研究中獨占鰲頭,曾孕育出五位中研院院士。近年來,更致力於跨領域研究,並在應用科技上加強與業界合作,院內教師每年均取得多項專利,所開發之商品廣泛應用於醫、藥、化妝品、食品加工業、農業、環保、資訊、教育產業及日常生活中。

在科學教育研究上,臺灣師大理學院之排名更高居世界第一,此外更有獨步全臺的科學教育中心,該中心就中學科學課程、科學教與學等方面從事研究與推廣服務;是全國人力最充足,設備最完善,具有良好服務品質的中心。

在理學院紮實、多元的研究基礎下,學生可依其性向、興趣做出寬廣之選擇,無論對其未來進入學術研究領域、教育界或工業界工作,均是絕佳選擇。

Browse

Search Results

Now showing 1 - 3 of 3
  • Item
    國中生線對稱概念學習研究
    (2003) 陳天宏
    摘要 對稱不僅是自然界中優美的造形,更是重要的數學概念。最近實施的九年一貫數學領域能力指標中更明列對稱概念的能力發展。本文第一部份以研究國中生對於線對稱概念所形成之概念心像為主,進而分析其迷思概念與其成因,並同時採取個案訪談的質性分析與問卷測驗的統計調查,依據線對稱概念心像的內涵︰典範現象、部份─全體推理及概念屬性的了解,設計面談診斷工具及問卷測驗工具。依平時數學表現,選取高、中、低三層次各兩位國二學生作為訪談對象分析學生之線對稱概念結構,並在大台北地區選取國一,國二,國三各兩班,約兩百位學生,實施開放性的線對稱概念測驗,分析中學生對於線對稱概念的了解、運用情形及迷思概念與推理策略。第二部分以Van Hiele(1984)發展層次為結構,設計線對稱概念試題,在北部選取國一、國二、國三各三班,約三百位學生作為問卷測驗對象,藉此了解中學生之線對稱概念發展情形。第三部分是以之前研究成果為參考,配合數學學習設計相關理論,設計實驗教材,以兩班國中二年級為對象,一班為引進GSP動態多重表徵教學環境的實驗組,另一班為傳統教學環境的對照組,實施線對稱概念實徵教學研究。 研究結果顯示(一)國中生對於線對稱概念呈現垂直或水平對稱軸的典範現象,且解題時多以典範例的概念心像而非採取概念定義處理問題。(二)國中生之線對稱概念大多在第一、二思維層次上,有中等程度的獲得,而二、三年級的思維層次沒有太大的差異(三)在GSP動態多重表徵環境教學環境中,學生對於概念心像的操作較為活躍,且典範現象之排他性也比傳統環境為低,在概念發展方面,實驗組在三、四層次的思維上有較高的提昇。但是,實驗組的低層次學生在各層次概念發展上,並沒有明顯進步。由此,我們認為,盡管是動態多重表徵環境,教師仍應注意學生學習情況,並且在適當時機作概念上的統整,以使學生的學習更為順暢與完整。
  • Item
    高中生關於向量內積的概念心像之探究
    (2013) 洪志瑋
    本研究探討高中生關於「向量內積」的概念心像。研究採問卷調查法,收集質與量的資料。研究抽樣採立意取樣,包括高程度、中程度學校之文組與理組四個班級一共149位高中三年級學生。 本研究的研究結果主要有: 1.學生對於相關的向量概念都有相當程度的理解,但仍有26%的學生無法分辨向量與純量的不同,有12%的學生對於向量絕對值的概念是不正確的。 2.學生對於「內積」的心像,其比較核心的主要有向量、偏代數型內積定義以及內積符號等概念,其次為圖形、投影、偏坐標型內積定義以及偏圖像型內積定義等概念。 3.發現高達四成的學生對於起點不同的兩向量不具備皆可作內積的概念心像,僅有約四成的學生其任意兩向量皆可作內積的心像穩固,不會隨著題目所給刺激而有所改變;同時學生的概念心像受到向量、角度、內積定義等相關概念心像的影響。 4.學生對於內積定義三種類型的具備情形,最高的是「偏代數型內積定義」心像,有95%;其次是「偏坐標型內積定義」的心像,有82%;最少的是「偏圖像型內積定義」的心像,只有38%。 5.代數型的心像受到典範例或圖像型定義的影響而有不同的樣貌。圖像型的心像也會有代數型心像的影響,除此之外受到投影概念影響很大。具備坐標型心像的同學中概念完全正確的只有24%。
  • Item
    高一學生關於「多項式除法原理」的概念心像之探究
    (2019) 王俊皓; Wang, Jyun-Hao
    本研究探討高一學生關於「多項式的除法原理」之概念心像。本研究的研究方法為描述性研究(descriptive research),利用問卷與訪談的方式,蒐集質與量的資料。以歸納分析(inductive analysis)的方式進行質的資料之處理,也搭配量化的研究信念,提供較客觀的分析數據與報導。 研究抽樣採立意取樣(purposive sampling),包括79位中高程度學生(會考積分約28.6分,基測 PR 值約90),與77位中程度學生(會考積分約20.6分,基測PR值約80),共計156位大台北地區高中一年級學生。 本研究的研究結果與發現,主要有以下8項: 1.高達62%的學生對於「多項式」之概念心像並不是建立得很完整,其主要認為常數(如−5、0、5)不是多項式,或認為分式(如7+6/𝑥)也是多項式的一種。 2.不到1成的學生知道「餘式次數<除式次數」與「餘式<除式」是不一樣的意思,有46%的學生會將「餘式<除式」中符號「<」解讀成「次數」的意思。 3.約10%的學生在面對「商式𝑞(𝑥)及餘式𝑟(𝑥)之間的關係」時(問卷第 6、7、8、9 題),認為其之間的關係為「餘式𝑟(𝑥)的次數必定小於商式 𝑞(𝑥)的次數」,對於「餘式的限制條件」之概念心像與概念定義有明顯的落差。 4.能將數學式「被除式𝑓(𝑥)÷除式𝑔(𝑥)=商式𝑞(𝑥)⋯餘式𝑟(𝑥)」主動轉成恆等式「𝑓(𝑥)=𝑔(𝑥)⋅𝑞(𝑥)+𝑟(𝑥)」的學生有 8 成,但只有約38%的學生知道「𝑓(𝑥)=𝑔(𝑥)⋅𝑞(𝑥)+𝑟(𝑥)」與「𝑓(𝑥)/𝑔(𝑥)= 𝑞(𝑥)+𝑟(𝑥)/𝑔(𝑥)」是等價關係,與「𝑓(𝑥)/𝑔(𝑥)=𝑞(𝑥)+𝑟(𝑥)」不是等價關係。 5.約21%的學生認為「被除式𝑓(𝑥)÷除式𝑔(𝑥)=商式𝑞(𝑥)⋯餘式𝑟(𝑥)」和 恆等式「𝑓(𝑥)=𝑔(𝑥)⋅𝑞(𝑥)+𝑟(𝑥)」與「𝑓(𝑥)=𝑔(𝑥)⋅𝑞(𝑥)⋯𝑟(𝑥)」代表相同的意思,對於什麼時候該「⋯」,什麼時候該「+」是不清楚的。 6.約82%的學生在程序性的「長除法」運思中,可以正確知道除到哪一步才該停,有符合「餘式 = 0或餘式次數<除式次數」。能將長除法的運算連結到「餘式 = 0或餘式次數<除式次數」此概念的學生中,「中高程度」比中程度高出約16%,顯示兩所不同程度學校的學生在「長除法的運思」是有明顯的差別。 7.學生面對「多項式的除法原理」這一個概念名稱的刺激下,腦中主動擷取的概念心像主要有 3 類:「除法」(約72%)、「各式間的關係」(約48%),以及「次數」(約22%)。其餘有「多項式除法原理的用途或限制」、「多項式」等概念心像。其中,能喚起「各式間的關係」此概念心像的學生,「中程度」比中高程度多出15 %;能喚起「多項式除法原理的用途或限制」此概念心像的學生,「中高程度」比中程度多出11%。 8.從整份問卷作答來看,「中高程度」的學生浮現的概念心像較符合概念定義,正確性較高,但概念心像的穩定性較低。相反地,「中程度」的學生浮現的概念心像較不符合概念定義,正確性較低,但概念心像的穩定性較高。