理學院

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/3

學院概況

理學院設有數學系、物理學系、化學系、生命科學系、地球科學系、資訊工程學系6個系(均含學士、碩士及博士課程),及科學教育研究所、環境教育研究所、光電科技研究所及海洋環境科技就所4個獨立研究所,另設有生物多樣性國際研究生博士學位學程。全學院專任教師約180人,陣容十分堅強,無論師資、學術長現、社會貢獻與影響力均居全國之首。

特色

理學院位在國立臺灣師範大學分部校區內,座落於臺北市公館,佔地約10公頃,是個小而美的校園,內含國際會議廳、圖書館、實驗室、天文臺等完善設施。

理學院創院已逾六十年,在此堅固基礎上,理學院不僅在基礎科學上有豐碩的表現,更在臺灣許多研究中獨占鰲頭,曾孕育出五位中研院院士。近年來,更致力於跨領域研究,並在應用科技上加強與業界合作,院內教師每年均取得多項專利,所開發之商品廣泛應用於醫、藥、化妝品、食品加工業、農業、環保、資訊、教育產業及日常生活中。

在科學教育研究上,臺灣師大理學院之排名更高居世界第一,此外更有獨步全臺的科學教育中心,該中心就中學科學課程、科學教與學等方面從事研究與推廣服務;是全國人力最充足,設備最完善,具有良好服務品質的中心。

在理學院紮實、多元的研究基礎下,學生可依其性向、興趣做出寬廣之選擇,無論對其未來進入學術研究領域、教育界或工業界工作,均是絕佳選擇。

Browse

Search Results

Now showing 1 - 9 of 9
  • Item
    可控型態的鉑錫合金奈米線作為有效的甲醇及乙醇氧化反應之電催化劑
    (2021) 周柏宇; Zhou, Bo-Yu
    直接酒精燃料電池(DAFC)是一種對環境友善且高效的能量轉換裝置。本論文主要講述陽極材料Pt3Sn奈米線通過雙功能效應及結構效應來優化,並應用在直接酒精燃料電池上。Pt3Sn奈米線是通過甲酸還原法製備的,並透過場發射式掃描電子顯微鏡 ( FESEM )、穿透式電子顯微鏡 ( TEM ) 、粉末式X光繞射儀 ( XRD )、能量散射光譜儀 ( EDS ) 、X光光電子光譜儀 ( XPS ) 進行物理及化學性質鑑定。活性及穩定性則是使用甲醇氧化反應(MOR)和乙醇氧化反應(EOR)來測試。電化學的結果顯示出雙金屬Pt3Sn觸媒具有比純Pt更好的性能,是因為雙功能機制。奈米線的結構效應顯示出更進一步的增強,藉由通過改變製造過程中的反應物濃度以及反應時間進行優化。以較低濃度製備的樣品(LC-Pt3Sn-144H)需要更長的反應時間才能獲得最長的奈米線,並顯示出最佳的甲/乙醇氧化反應活性和穩定性。高濃度樣品(HC-Pt3Sn-48H)可以顯著的減少製造時間以達到相似的催化劑結構和電化學性能。本論文所設計的觸媒以雙功能機制和結構效應應證,並展示出有效的方法優化製成。
  • Item
    L10-FePt奈米線陣列之垂直磁性自旋閥
    (2011) 張峻賢; Chun-Hsin Chang
    本研究利用孔洞為50 nm之陽極氧化鋁(AAO)作為模板,再以電化學沉積之方式合成出FePt奈米線陣列。藉由X光繞射儀(XRD)觀察FePt奈米線陣列於700oC與5% H2/N2之環境下進行熱退火時FePt奈米線陣列將從無序相之面心立方晶格fcc轉換為有序L10相,FePt奈米線陣列於有序相L10相其矯頑磁場約為7.5 kOe,利用熱退火之方式,使L10相FePt奈米線陣列至(001)方向之磁化易軸。而L10相FePt奈米線陣列之矯頑磁場遠大於Ni3Fe,故FePt/Cu/Ni3Fe奈米線陣列中之FePt固定層與Ni3Fe自由層之磁性差異性,即形成具功能性之開關元件。藉由此性質合成FePt/Cu/Ni3Fe與FePt/NiO/Ni3Fe多層結構之奈米線,即可觀察巨磁阻(GMR)之現象與垂直式磁性自旋閥效應,而多層L10-FePt奈米線陣列其特性可被應用於一維磁性奈米材料。
  • Item
    矽奈米線場效電晶體
    (2010) 李彥霆; Yan-Ting Li
    迄今,矽奈米線(SiNWs)可使用不同的方法製作,例如雷射濺鍍、熱蒸鍍和微影技術。然而,由這些方法所製成之矽奈米線大多為非固定位置與方向或是由於自組式成長而形匯聚及扭轉等情況,限制了在奈米電子學之應用。 而本研究中我們結合由上而下之半導體製程技術並結合局部的矽氧化作用之技術製作直徑5 ~ 20奈米,長度近似於400奈米之多晶矽奈米線。局部矽氧化作用乃利用氮化矽於矽墊層區域防止矽氧化,並於介於源、汲極間電子傳輸之通道之矽線開窗以進行局部的矽氧化作用以形成矽奈米線。 此外,利用濕式蝕刻使多晶矽奈米線形成獨立懸掛橋樑結構,並定義多晶矽閘極,製作出全環繞式(gate all around;GAA)閘極奈米線場效電晶體。隨著元件之完成,以穿透式電子顯微鏡(TEM)確認元件之結構,並做基本電性之探討。
  • Item
    鉍-銻-碲單晶奈米線之製備與熱電性質研究
    (2013) 蔡瑋瀚; Wei-Han Tsai
    在許多熱電材料相關研究顯示,鉍-銻-碲材料在接近室溫有良好的熱電性質,並且在低維度下,其物理行為將會隨著尺寸的不同而改變,此時量子效應則明顯的影響了其物理的特性和行為,因此聲子在物體裡面的物理行為也有所改變,於是我們合成單晶BixSb2-xTe3-y奈米線量測熱電性質,期望可以看到熱電性質的提升。首先使用脈衝雷射沉積系統將Bi0.5Sb1.5Te3鍍於二氧化矽基板,將附有一層薄膜的基板放置石英管並封真空,薄膜以330 ℃至350 ℃熱處理5天,經過熱處理後奈米線會生長於薄膜表面,直徑由幾十至幾百奈米,而長度則為幾微米至幾十微米,將奈米線懸放至量測晶片,透過選區繞射分析奈米線的結晶性並知其生長方向為[110],使用X射線能量色散儀分析成分,利用掃描式電子顯微鏡影像測量出奈米線的截面積,使用四點量測奈米線的電阻率ρ。使用晶片上的加熱器及溫度計可量測席貝克係數(Seebeck coefficient) S,利用三倍頻方法(3ω method)量測熱傳導率κ,由量測出的三項熱電係數可得熱電優質係數(figure of merit) ZT=S2T/ρκ,此論文量測三根單晶奈米線,等效直徑分別為、350奈米、280奈米和240 奈米,當奈米線的尺寸小於聲子的平均自由徑,會影響聲子的傳遞,因而降低其熱傳導係數,使ZT值增加。以240奈米的奈米線為例,量測的最高ZT值為0.51
  • Item
    半導體奈米帶與奈米線之光譜研究
    (2004) 車吉平; Chi-Ping Che
    我們探討三氧化二鎵奈米線、奈米帶、以及單一磷化鎵奈米線的表面結構、電性、與光譜特性,擴展先前群集奈米線的量測至奈米帶與單一奈米線的研究。 在三氧化二鎵奈米結構的研究中,首先,由全頻光譜的分析,我們發現11個紅外光活性振動模以及4個電子吸收帶,包括相近於塊材能隙的吸收峰。由拉曼散射光譜的分析,我們發現奈米帶的拉曼活性振動模與奈米線相近,並且沒有明顯的共振效應;隨著樣品的溫度升高,這些拉曼振動模的頻率往低頻偏移以及半高寬變寬,此變化的幅度與其他三五族半導體比較,顯得異常的小。 在單一磷化鎵奈米線的拉曼散射光譜研究中,我們發現其拉曼活性振動模與單晶相較之下,其頻率會往低頻偏移,並且形狀較為不對稱,我們以聲子侷限效應、雷射的熱效應、與電漿子耦合效應解釋此現象,並且發現電漿子耦合效應的模擬結果最能符合實驗結果。由偏振拉曼光譜的分析,我們發現入射光電場偏振方向與拉曼振動模強度之關係違背了馬勒斯定律,我們推測由於奈米線的直徑對長度之比值極小,這種結構的獨特性導致了異常的偏振拉曼光譜特徵。由偏振螢光光譜的分析,我們發現當入射光及散射光電場偏振方向與樣品長軸一致時,磷化鎵奈米線於2.16 eV處呈現一顯著的螢光訊號。
  • Item
    導電高分子與氮化鎵奈米線應用於光伏效應之研究
    (2009) 陳柏村
    我們企圖使用奈米管、奈米線或是奈米柱和共軛高分子混摻用來製作有機/無機混摻太陽能電池藉以提高電子在材料上的遷移率及電荷收集效率。我們將Thermal-CVD成長的氮化鎵奈米線和具規則性的聚3-己烷噻吩(P3HT)混摻置成薄膜,從拉曼光譜中我們看見氮化鎵奈米線和聚3-己烷噻吩 (P3HT) 在表面上可能有作用而使得聚3-己烷噻吩(P3HT)的特徵峰值及強度改變,另外在室溫的光激螢光光譜中可以看峰值紅移,可能是因為氮化鎵奈米線表面的孤對電子推擠聚3-己烷噻吩(P3HT)上的π電子及硫上的孤對電子造成聚3-己烷噻吩(P3HT)的排列較鬆散所致。我們設計氮化鎵奈米線混摻聚3-己烷噻吩(P3HT)的有機/無機太陽能電池其元件表現會受到濃度、膜厚及退火等影響,目前效率大約0.015%、開路電壓約為950mV、短路電流約為0.05 mA/cm2。
  • Item
    以計算探討鉑錫基催化劑在直接乙醇燃料電池陽極和陰極反應中的研究
    (2018) 顏劭晏; Yan, Shao-Yan
    本研究分陰極觸媒和陽極觸媒兩部分: PtSn雙金屬催化劑上的陰極氧還原反應(ORR)和陽極乙醇氧化反應(EOR)。在ORR的研究中,使用Pt(111)表面取代不同Sn比例來模擬PtSn催化劑。我們的計算發現,Sn取代越多,活性越高,這歸因於其較低的親氧性和相鄰Pt的d-band center;然而,越多的Sn由於結構扭曲降低穩定性。穩定性可以藉由錫氧化物修飾Pt表面進一步改善,在ORR過程中,這些氧化物對Pt表面吸附適中及強的斥力以保持結構。而在EOR的研究中,通過在PtSn中添加Ag形成三元PtSnAg催化劑來修飾PtSn雙金屬。Ag上的氧化物由於可以吸引解離的氫以及與OH有排斥效應可以有效改進關鍵步驟CH3CHO氧化成CH3COOH而促進了EOR。此外,氧化物可以增強乙醇在鄰近的Pt上的吸附以降低初始脫氫反應。
  • Item
    一維奈米材料的成長、分析與功能化(2/3)
    (2004-09-08) 陳貴賢; 陳家俊; 王崇人; 林麗瓊; 吳季珍; 彭維鋒; 馬廣仁; 陳啟東; 呂宗昕; 莊敏宏; 陳俊維
    本計畫一年來 陳家俊 、林麗瓊、吳季珍、王崇人分別在Sb/sub 2/S/sub 3/、InN、GaN、ZnO、TiO/sub 2/、Ga/sub 2/O/sub 3/、Au等一維奈米材料的製備與特殊功能研究上有具體進展,除了有效製備各種奈米管、奈米線之外,我們更進一步研究其功能性的應用,以及特殊設計模式成長成為可行,有效促進下游的功能性應用研究。在光電特性分析上,彭維鋒利用同步輻射中心的X光吸收光譜(XANES)結合林麗瓊的電子束螢光光譜儀(Cathodoluminescence; CL),以及可以對奈米大小尺寸的材料的電子結構,形貌、成分、螢光特性做有效分析。同時,UV Micro-Raman/PL系統在加裝325-nm光源之後,可以在有效再低溫下測量寬能距材料螢光與拉曼光譜,對本計畫光電特性的研究有極大幫助。在功能性應用方面,王崇人將研發出來的金奈米柱的表面電漿波應用於生物分子檢測,並且發展出光奈米光熱轉換的方法,可應用於生物晶片檢測及醫療聲波顯像上。陳啟東利用e-beam writer連結CNT並測其電性,在MWCNT上看到Columb oscillation。同時,呂宗昕與莊敏宏分別將CNT應用在鋰電池電極與場發射方面的研究,初步測 量顯示鋰電池充電量遠出過當前的文獻報告。呂宗昕也發展奈米結構鋰電池陽極材料,這配合奈米碳管鋰電池應用將有極大潛力。
  • Item
    Ⅲ-N氮化物奈米線的研究(上)
    (臺北市 : 越吟出版社, 2003-01-01) 陳貴賢; 藍榮煌; 林麗瓊; 陳家俊; 許志偉