理學院

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/3

學院概況

理學院設有數學系、物理學系、化學系、生命科學系、地球科學系、資訊工程學系6個系(均含學士、碩士及博士課程),及科學教育研究所、環境教育研究所、光電科技研究所及海洋環境科技就所4個獨立研究所,另設有生物多樣性國際研究生博士學位學程。全學院專任教師約180人,陣容十分堅強,無論師資、學術長現、社會貢獻與影響力均居全國之首。

特色

理學院位在國立臺灣師範大學分部校區內,座落於臺北市公館,佔地約10公頃,是個小而美的校園,內含國際會議廳、圖書館、實驗室、天文臺等完善設施。

理學院創院已逾六十年,在此堅固基礎上,理學院不僅在基礎科學上有豐碩的表現,更在臺灣許多研究中獨占鰲頭,曾孕育出五位中研院院士。近年來,更致力於跨領域研究,並在應用科技上加強與業界合作,院內教師每年均取得多項專利,所開發之商品廣泛應用於醫、藥、化妝品、食品加工業、農業、環保、資訊、教育產業及日常生活中。

在科學教育研究上,臺灣師大理學院之排名更高居世界第一,此外更有獨步全臺的科學教育中心,該中心就中學科學課程、科學教與學等方面從事研究與推廣服務;是全國人力最充足,設備最完善,具有良好服務品質的中心。

在理學院紮實、多元的研究基礎下,學生可依其性向、興趣做出寬廣之選擇,無論對其未來進入學術研究領域、教育界或工業界工作,均是絕佳選擇。

Browse

Search Results

Now showing 1 - 4 of 4
  • Item
    基於分類錯誤之線性鑑別式特徵轉換應用於大詞彙連續語音辨識
    (2009) 李鴻欣; Hung-Shin Lee
    線性鑑別分析(linear discriminant analysis, LDA)的目標在於尋找一個線性轉換,能將原始資料投射到較低維度的特徵空間,同時又能保留類別間的幾何分離度(geometric separability)。然而,LDA並不能總是保證在分類過程中產生較高的分類正確率。其中一個可能的原因在於LDA的目標函式並非直接與分類錯誤率連接,因此它也就未必適合在某特定分類器控制下的分類規則,自動語音辨識(automatic speech recognition, ASR)就是一個很好的例子。在本篇論文中,我們藉著探索每一對容易混淆之音素類別間的經驗分類錯誤率(empirical classification error rate)與馬氏距離(Mahalanobis distance)的關係,擴展了傳統的LDA,並且將原來的類別間散佈矩陣(between-class scatter),從每一對類別間的歐式距離(Euclidean distance)估算,修改為它們的成對經驗分類正確率。這個新方法不僅保留了原本LDA就具有的輕省可解性,同時無須預設資料是為何種機率分佈。 另一方面,我們更進一步提出一種嶄新的線性鑑別式特徵擷取方法,稱之為普遍化相似度比率鑑別分析(generalized likelihood ratio discriminant analysis, GLRDA),其旨在利用相似度比率檢驗(likelihood ratio test)的概念尋求一個較低維度的特徵空間。GLRDA不僅考慮了全體資料的異方差性(heteroscedasticity),即所有類別之共變異矩陣可被彈性地視為相異;並且在分類上,能藉由最小化類別間最混淆之情況(由虛無假設(null hypothesis)所描述)的發生機率,而求得有助於分類效果提升的較低維度特徵子空間。同時,我們也證明了LDA與異方差性線性鑑別分析(heteroscedastic linear discriminant analysis, HLDA)可被視為GLRDA的兩種特例。再者,為了增進語音特徵的強健性,GLRDA更可進一步地與辨識器所提供的經驗混淆資訊結合。 實驗結果顯示,在中文大詞彙連續語音辨識系統中,我們提出的方法都比LDA或其它現有的改進方法,如HLDA等,有較佳的表現。
  • Item
    多通道棘波分類系統之低功率ASIC電路設計
    (2014) 柯奇恩; KE,Chi-En
    本論文針對目前現有的棘波分類系統設計架構,並使用ASIC電路設計方式來實現此架構。本論文採用Nonlinear Energy Operator (NEO) 來偵測棘波,並搭配Generalized Hebbian Algorithm (GHA)演算法將偵測到的棘波進行特徵擷取。為了減少硬體資源的消耗,GHA架構中在計算調整不同組權重值時皆共享相同一塊計算電路。因此,本論文所提出的架構同時擁有較低的晶片面積,以即使用了台積電90奈米製程和對於功率消耗優化之技術,使得在功率消耗的這部分也有良好的表現。最後由於使用了多通道的訊號輸入,本論文在棘波分類系統的吞吐量能有大幅的提升。
  • Item
    特徵選擇與擷取對辨識娃娃臉之研究
    (2014) 蔡尹廷
    在社交場合中,娃娃臉這種臉部特徵在外表上會具有吸引力而且給人友善的感覺。人們可以很簡單的去判斷一個人是否有娃娃臉,然而,構成娃娃臉的特質十分模糊。在我們的論文中,將去分析人臉上的特徵,並挑選出哪些特徵對於判斷一個人是否具有娃娃臉是有幫助的。我們使用特徵選擇(Feature selection)方法去挑選出最佳的特徵組合以及使用卷積神經網路(Convolutional Neural Network)去自動的學習出特徵來判斷是否為娃娃臉。在實驗當中,我們比較使用心理學的特徵、特徵選擇以及卷積神經網路三種方法的差別,在使用卷積神經網路方法的結果會比其他兩種方法來得更好。
  • Item
    強健性語音辨識上關於特徵正規化與其它改良技術的研究
    (2005) 劉成韋; Liu Cheng-Wei
    人類在幾千年的演化過程中,生活上的智慧不斷的累積傳承,因此過去文明變遷和人類演化的步伐是一致的。而如今科技進化的速度,卻早已大大的超越了人類演化的速度,並且日常生活中可以使用的多媒體影音資訊也越來越多,例如廣播電視節目、語音信件、演講錄影和數位典藏等,基於這個因素,可以隨時隨地的存取上述多媒體資訊的手持式行動裝置,也越來越受到重視。很明顯地,在上述的絕大部份多媒體中,語音可以說是最具語意的主要內涵之一。除此之外,語音自古以來一直都是人類最自然也最直接的溝通方式,若能利用語音來做為人類和科技產品之間的溝通橋樑,除了具備友善且有效的優點之外,更能省去繁雜的操作手續。現今市面上所見的科技產品,普遍的來說體積已越來越小,因此觸控的方式已漸漸地不再便利。此外傳統的人機介面如滑鼠和鍵盤,並非在所有的環境下都能適當的被使用,例如在行動的汽車環境下就顯得不夠方便。所以若能利用語音來做為人機介面,將會大大的提升便利性,使得科技和生活能夠更緊密的融合。然而語音辨識通常會遭受到一些複雜的因素干擾,諸如背景噪音,通道效應,以及語者和語言上的差異等諸多因素,使得辨識系統始終無法發揮最佳的效用,而辨識率往往也差強人意。 而本篇論文的主旨,在於針對目前許多語音強健技術進行研究比較並加以改良,最後整合出一套新的技術。而本論文主要的研究方法,是以查表式統計圖等化法為主,並和其它相關的技術結合來提升語音的強健性,最後將查表式統計圖等化法加以改良為改良式統計圖等化法,也就是將參考分佈依據音框的種類,分為靜音和語音。甚至根據中文特性,再將語音細分為聲母和韻母。而吾人所提出的改良式統計圖等化法,辨識率比傳統的查表示統計圖等化法相對提升了4.04% ; 對於原始辨識率也相對提升了至少5.75%。此外吾人也嘗試對語音訊號所擷取出的頻譜熵特徵與線性鑑別分析的技術結合,再與傳統的語音特徵參數合併來作為新的語音特徵參數,而辨識率也相對提升了近1.00%。若將新的特徵參數和本論文另一個研究主題(THEQ)作結合,更可以達到加成性的效果,平均相對辨識率提升至5.19%。