理學院
Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/3
學院概況
理學院設有數學系、物理學系、化學系、生命科學系、地球科學系、資訊工程學系6個系(均含學士、碩士及博士課程),及科學教育研究所、環境教育研究所、光電科技研究所及海洋環境科技就所4個獨立研究所,另設有生物多樣性國際研究生博士學位學程。全學院專任教師約180人,陣容十分堅強,無論師資、學術長現、社會貢獻與影響力均居全國之首。
特色理學院位在國立臺灣師範大學分部校區內,座落於臺北市公館,佔地約10公頃,是個小而美的校園,內含國際會議廳、圖書館、實驗室、天文臺等完善設施。
理學院創院已逾六十年,在此堅固基礎上,理學院不僅在基礎科學上有豐碩的表現,更在臺灣許多研究中獨占鰲頭,曾孕育出五位中研院院士。近年來,更致力於跨領域研究,並在應用科技上加強與業界合作,院內教師每年均取得多項專利,所開發之商品廣泛應用於醫、藥、化妝品、食品加工業、農業、環保、資訊、教育產業及日常生活中。
在科學教育研究上,臺灣師大理學院之排名更高居世界第一,此外更有獨步全臺的科學教育中心,該中心就中學科學課程、科學教與學等方面從事研究與推廣服務;是全國人力最充足,設備最完善,具有良好服務品質的中心。
在理學院紮實、多元的研究基礎下,學生可依其性向、興趣做出寬廣之選擇,無論對其未來進入學術研究領域、教育界或工業界工作,均是絕佳選擇。
Browse
8 results
Search Results
Item 發酵乳桿菌Lactobacillus fermentum對降低成年男性抽菸頻率之效用:一項隨機單盲交叉試驗研究(2021) 胡書菱; Hu, Shu-Ling香菸中的尼古丁 (nicotine)會刺激大腦中神經傳導物質多巴胺 (dopamine)釋放,使吸菸者獲得滿足感,因而調節腦中多巴胺濃度為目前戒菸療法之主要作用途徑。有鑑於精神益生菌 (psychobiotics)可藉腸腦軸線 (gut-brain axis)調控腦部神經傳導物質之釋放,繼而影響宿主的情緒及相關認知行為,因此本研究目的在於探討補充益生菌Lactobacillus fermentum GKF3是否能改善吸菸者之吸菸頻率。本研究採隨機單盲交叉對照模式 (a randomized single-blind crossover trial),招募45名無重大疾病且無酗酒、睡眠障礙及憂鬱狀態之成年男性吸菸者,將受試者隨機區分為安慰劑組 (placebo group)及GKF3組 (GKF3 group),連續給予四週安慰劑或GKF3樣品,再通過兩週洗除期 (washout period),交叉對調給予不同樣品連續四週。試驗期間受試者定期接受尼古丁成癮度量表 (Fagerstrom Test for Nicotine Dependence, FTND)、24小時飲食紀錄 (24-hour diet recall)以及國際身體活動量表 (International Physical Activity Questionnaire, IPAQ)之問卷調查,以評估其菸癮程度、營養素攝取及身體活動量。本研究亦分析受試者尿液中三種尼古丁之主要代謝物 nicotine, cotinine 及 trans-3’-hydroxycotinine (T3HC)濃度,以評估試驗前後之吸菸量變化。同時,分析血清左多巴 (L-3,4-dihydroxyphenylalanine, L-DOPA)以評估GKF3是否具有生成L-DOPA之活性;分析血漿丙二醛 (malondialdehyde, MDA)與蛋白質羰基 (protein carbonyl group),以作為體內氧化壓力之指標。試驗結果顯示,受試者於試驗期間之營養素攝取、身體活動量及基本血液生化數值,兩組間皆無顯著差異 (p>0.05)。試驗前後尿液尼古丁代謝物濃度變化,GKF3組受試者之下降率 (67 %)顯著低於安慰劑組 (36 %, p = 0.0031)。兩項氧化壓力指標物及L-DOPA濃度,兩組受試者於試驗前後均無顯著差異 (p> 0.05)。綜合上述,本研究證實補充Lactobacillus fermentum GKF3益生菌連續四週具有降低成年男性吸菸者吸菸頻率之效用,可能具有精神益生菌之特性,未來具有發展為戒菸輔助療法之潛力。Item 開發以4,5-多巴雙加氧酶為基礎之全細胞生物感測器用於檢測二價銅離子及多巴胺(2020) 石家宜; Shih, Chia-I左旋多巴經由全細胞生成之4,5-多巴雙加氧酶能將其催化成甜菜醛胺酸,透過加入2-胺基對苯二甲酸 (2-AIPA) ,可進一步生成具有紅螢光的甜菜色素 (2-AIPA-BX)。本研究開發了一種簡單且經濟的方法,可大量合成甜菜色素用於二價銅離子檢測,在銅離子濃度為25~500 μM的範圍內,有隨著濃度提升而紅螢光下降的趨勢,呈現出良好的線性 (R = 0.99) 且最低偵測極限為21.92 μM,也成功將2-AIPA-BX應用於人工尿液樣品及紙基材上的檢測,以簡單、低樣品耗量、低成本且便攜式的設置進行二價銅離子的檢測。此外,本研究也經由4,5-多巴雙加氧酶上特定的胺基酸位置突變以改變其反應的選擇性,成功使其反應選擇性從左旋多巴變成多巴胺,證實此方法的可行性及未來發展性。Item 中孔洞複合材料應用於電化學與拉曼感測器(2020) 李宜蓁; Lee, Yi-Chen本研究以類史托伯方法 (Stöber method) 藉由沸石晶種與界面活性劑在40度下自組裝形成中孔洞沸石奈米粒子 (MZNs)。這種以沸石為組成的奈米粒子具有高結晶性所產生之微孔性質,同時具備耐高溫及水氣之性質。MZNs具有高比表面積 (SBET > 800 m2/g) 與大孔徑 (~5 nm)能同時作為硬模板,用於限制銀奈米粒子之生長能有效作為表面拉曼增強 (SERS) 的基材,將所合成的中孔洞奈米銀複合材料 (Ag@MZNs) 負載到晶片上製成簡易型SERS感測晶片,能夠有效進行10-1 M可多普洛菲 (Ketoprofen) 等濫用藥物之檢測。 本研究另一個材料為合成中孔洞氧化石墨烯奈米粒子 (MGNs),此材料負載於高比表面積 (SBET > 800 m2/g) 之MZNs上,經由高溫乙烯處理石墨烯化,表面沉積類氧化石墨烯 (GO) 使其具有半導體特性,可浸塗於網印碳電極 (SPCE) 上進行電化學感測10 mM易氧化之人體精神分子,成為多巴胺電化學檢測時的理想選擇,透過修飾MGNs增強電極的靈敏度,讓MGNs@SPCE能有效應用於檢測微量多巴胺。Item Rab18透過催乳素調控產後母鼠成年神經元新生、育幼以及抗焦慮行為(2018) 洪啟榮; Hung, Chi-Jung成年哺乳動物腦中持續有成年神經元新生之區域分別為嗅球 (olfactory bulb, OB)及海馬迴之齒狀迴 (dentate gyrus, DG)。而神經幹細胞所在之區域,分別為側腦室旁區(subventricular zone, SVZ)與海馬迴之齒狀迴內側區(subgranular zone, SGZ)。成年神經元新生於嗅球中主要功能為氣味辨識及產生育幼行為,而海馬迴中主要功能為空間之記憶及焦慮之調節。Rab18屬於Ras相關的小GTP酶Rab家族之成員。由於Rab18-/-之母鼠其育幼行為是受損的,此現象與成年神經元新生受損之小鼠類似,因此我們懷疑Rab18與成年神經元新生有關。先前研究顯示於神經內分泌細胞中Rab18會負調控多巴胺之釋放,而多巴胺會抑制成年神經元新生及催乳素之釋放,此外催乳素所誘導嗅球成年神經元新生為產生育幼行為及抗焦慮所必需的。因此我們假設Rab18-/-之母鼠懷孕第1天到第7天注射催乳素可能可以挽救成年神經元新生、育幼行為及焦慮之行為。我們發現,溶劑注射後Rab18-/-產後母鼠OB及DG之成年神經元新生明顯變少, SVZ中增殖細胞、神經母細胞及神經幹細胞數目也均有減少,而SGZ中增殖細胞及神經幹細胞數目也均有減少。另外接受催乳素注射後Rab18-/-產後母鼠SVZ增殖細胞、神經母細胞及主嗅球(main olfactory bulb, MOB)之成年神經元新生皆有增加,而Rab18-/-母鼠產後焦慮也因催乳素注射後有緩解,不過育幼行為及味辨識能力仍然沒有被挽救回來。這些結果顯示Rab18會透過催乳素誘導MOB成年神經元新生,但Rab18不會透過催乳素調節育幼行為。Item Rab18負調節產後母鼠腦中多巴胺進而誘導其成年神經元新生與育幼行為(2018) 黃柏文; Huang, Po-Wen成年神經元新生的現象會發生在成年哺乳類動物腦中的兩個區域。在側腦室下區中,神經幹細胞會產生神經母細胞並沿著Rostral migratory stream(RMS)遷移到嗅球並分化成成熟神經元,在嗅球的成年神經元新生功能為辨別氣味和育幼行為。在齒狀迴顆粒細胞下區中,神經幹細胞會產生神經母細胞,它們接著分化成海馬迴齒狀迴中的神經元,齒狀迴的成年神經元新生功能為抗焦慮以及依賴海馬迴的學習和記憶。Rab18是Rab蛋白中的其中一員,屬於Ras相關的小GTP水解酶家族。先前,我們發現Rab18基因剔除母鼠的成年神經元新生有缺陷且其育幼行為是受損的。除此之外,在產後母鼠中,我們還發現Rab18會負調節多巴胺的分泌並且正調節催乳素的濃度。因此,我們假設Rab18透過抑制多巴胺和增加催乳素來調節成年神經元新生和育幼行為。我們給Rab18基因剔除處女鼠注射多巴胺D2受體的拮抗劑haloperidol (HAL),並透過OB / DG神經元新生去測試我們的假設。在我們初步的結果中,發現當Rab18基因剔除處女鼠注射HAL後,側腦室下區中的增殖細胞和神經母細胞會恢復到與野生型處女鼠一樣的程度。同時,當我們將Rab18基因剔除處女鼠注射HAL之後,齒狀迴顆粒細胞下區中的增殖細胞、神經母細胞及神經元也會恢復到與野生型處女鼠一樣的程度。因此,Rab18會透過抑制多巴胺的釋放,進而調節在側腦室下區中的增殖細胞和神經母細胞以及齒狀迴顆粒細胞下區中的增殖細胞、神經母細胞及齒狀迴中的神經元。此外,我們在Rab18基因剔除懷孕鼠注射HAL後,去測試成年神經元新生、育幼行為、氣味辨識和抗焦慮行為能否回復到與野生型產後鼠一樣的狀態。我們發現在Rab18基因剔除懷孕鼠注射HAL後,側腦室下區中的增殖細胞和神經母細胞會恢復到與野生型產後鼠一樣的程度,並且齒狀迴顆粒細胞下區中的神經幹細胞、增殖細胞及神經元也會恢復到與野生型產後鼠一樣的程度,我們也發現到Rab18基因剔除懷孕鼠注射HAL後,氣味辨識並不會恢復到與野生型產後鼠一樣的程度,而焦慮行為並未在Rab18基因剔除產後鼠及野生型產後鼠中發現有任何差異。所以,Rab18會透過抑制多巴胺的釋放,進而調節在側腦室下區中的增殖細胞和神經母細胞以及齒狀迴顆粒細胞下區中的增殖細胞、神經幹細胞及齒狀迴中的神經元。除此之外,Rab18可能會透過抑制多巴胺的的釋放去調節育幼行為並且Rab18對於氣味辨識是必需的。在未來,我們將繼續研究Rab18如何去調節懷孕鼠中的育幼行為及氣味辨識。Item 以酪氨酸酶、殼聚醣、氧化還原石墨烯製備高靈敏度和選擇性的網印印刷碳電極用於多巴胺檢測(2018) 柳承佑; Liu, Cheng-You多巴胺是人體中重要的神經傳遞物質,其對於帕金森氏症、阿茲海默症皆有重大的影響。在實驗中以酪胺酸酶 (tyrosinase)、殼聚醣 (chitosan)、氧化還原石墨烯 (reduced graphite oxide,rGO) 修飾於網印印刷碳電極 (Screen-printed carbon electrode,SPCE) 作為電化學生物感測器,用於多巴胺的檢測。並且針對抗壞血酸以及尿酸,這類在生物體內常見的干擾物,可以避免此感測器不被干擾而影響偵測誤判。利用循環伏安法測量證明了,所提出的電化學感測器的高靈敏度和選擇性,偵測極限為22 nM,並且與先前文獻相比,有較廣的線性範圍為0.4-8 μM和40-500 μM。此外,所提出的電極被應用於健康人體的尿液樣品時,取得了令人滿意的準確率,表示其適用於生理樣品中多巴胺的分析。Item 開發大腸桿菌之雙訊號多巴胺全細胞生物感測器(2017) 林于寬; Lin, Yu-Kuan多巴胺為一兒茶酚胺類之神經傳導物質且在人體中扮演著不可或缺的角色,而不正常的多巴胺濃度會導致一些疾病的產生,如:帕金森氏症以及亨丁頓舞蹈症。因此檢測多巴胺是一門很重要的課題。我們設計了一組感測多巴胺之大腸桿菌全細胞生物感測器,運用大腸桿菌中單胺類調控組作為感測機制,並以紅色螢光蛋白作為訊號來源,針對多巴胺濃度能夠有良好的相關係數以及偵測極限 (1.43M),且將紅色螢光蛋白置換為紫茉莉之4,5-多巴雙加氧酶 (MjDOD),4,5-多巴雙加氧酶能將左旋多巴轉換為甜菜醛胺酸 (具有432nm特徵吸收峰,為甜菜黃色素之前驅物),推測多巴胺也能透過4,5-多巴雙加氧酶催化而形成同樣具有432nm特徵吸收峰的6-去羧基甜菜醛胺酸,置換4,5-多巴雙加氧酶後在偵測多巴胺以及左旋多巴時,同時具有相當不錯的相關係數以及偵測極限,也經由酵素的置換,我們成功地消除了苯乙胺以及苯乙醛的干擾。最後我們結合紅色螢光蛋白以及4,5-多巴雙加氧酶,設計出足以區分苯乙胺、多巴胺、左旋多巴以及腎上腺素等四種類似物,透過偵測紅色螢光以及432nm特徵吸收峰,這四種類似物的訊號消長不盡相同,因此可以製作其特徵訊號圖譜。此生物感測器有著相當不錯的偵測極限以及區分多巴胺類似物的特性,在未來偵測與多巴胺相關的疾病能夠更加精準且有效。Item 毛細管電泳-不均勻電場效應輔助線上掃集法/紫光LED誘導螢光偵測法對尿液中多巴胺及正腎上腺素之分析研究(2005) 李晏誠; Yen-Cheng Li毛細管電泳-不均勻電場效應輔助線上掃集法第一次被提出並且與一般的掃集法在靈敏度上以及分離效果作比較。本實驗選擇的分析物是經由NDA (naphthalene-2,3-dicarboxaldehyde) 螢光標識試劑衍生後的多巴胺以及正腎上腺素。在使用一般的掃集法技術下,當毛細管的進樣長度為30 cm (大約佔毛細管總長的1/3) 時,此時的分離度僅有1.5;然而當使用不均勻電場效應輔助線上掃集法時,分離度可以很明顯的增加到9.2。另外在偵測靈敏度上,以紫光/發光二極體 (發光功率大約2mW) 為螢光激發光源時,對於多巴胺衍生物其偵測極限大約是10-9 M,與使用一般的掃集法的偵測極限相近,因為此時的進樣量是相同的。除此之外,這個技術對於偵測尿液中低濃度的多巴胺也提供了足夠的靈敏度以及分離效果。