理學院

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/3

學院概況

理學院設有數學系、物理學系、化學系、生命科學系、地球科學系、資訊工程學系6個系(均含學士、碩士及博士課程),及科學教育研究所、環境教育研究所、光電科技研究所及海洋環境科技就所4個獨立研究所,另設有生物多樣性國際研究生博士學位學程。全學院專任教師約180人,陣容十分堅強,無論師資、學術長現、社會貢獻與影響力均居全國之首。

特色

理學院位在國立臺灣師範大學分部校區內,座落於臺北市公館,佔地約10公頃,是個小而美的校園,內含國際會議廳、圖書館、實驗室、天文臺等完善設施。

理學院創院已逾六十年,在此堅固基礎上,理學院不僅在基礎科學上有豐碩的表現,更在臺灣許多研究中獨占鰲頭,曾孕育出五位中研院院士。近年來,更致力於跨領域研究,並在應用科技上加強與業界合作,院內教師每年均取得多項專利,所開發之商品廣泛應用於醫、藥、化妝品、食品加工業、農業、環保、資訊、教育產業及日常生活中。

在科學教育研究上,臺灣師大理學院之排名更高居世界第一,此外更有獨步全臺的科學教育中心,該中心就中學科學課程、科學教與學等方面從事研究與推廣服務;是全國人力最充足,設備最完善,具有良好服務品質的中心。

在理學院紮實、多元的研究基礎下,學生可依其性向、興趣做出寬廣之選擇,無論對其未來進入學術研究領域、教育界或工業界工作,均是絕佳選擇。

Browse

Search Results

Now showing 1 - 7 of 7
  • Item
    使用卷積神經網路進行飯店評論的情緒分析
    (2021) 蕭承豪; Hsiao, Cheng-Hao
    隨著網路與科技的蓬勃發展,產生了愈來愈多的數據與資料,就文字方面,評論方面占著一個很大一定的比例,這些評論的對象大多是人、產品、服務或活動等。其中線上旅遊論壇的興起使網路成為尋求旅行資訊的主要手段。旅行者在社交網站上相互交流並分享他們的觀點和經驗,每天產生大量評論,以至於產生在線酒店評論信息過載的問題。將近95%的旅行者在做出預訂決定之前先閱讀了在線酒店評論,並且超過三分之一的旅行者認為在網上選擇飯時,評論中表達的觀點是最關鍵的因素。因此,有效識別有益性的評論已成為重要的研究課題。 本文藉由擷取歐洲飯店515,000條客戶評論的資料做情緒分析,除了做一般的情緒分析,另外抽取詞性當作特徵,分別為完整資料集,只有形容詞跟副詞的形容詞,以及名詞還有動詞的資料集,經過卷積神經網路的訓練,並觀察實驗結果,效能的評估方式以精準率 (Precision)、召回率 (Recall) 和 F1 分數 (F1-measure, F1)作比較。
  • Item
    提供具可解釋並改善評論缺漏問題之推薦系統
    (2020) 陳佑翔; Chen, You-Xiang
    儘管以評論特徵為基礎的相關研究,證實能克服用戶-商品間評分資料稀疏的問題以提升評分預測效能,然而其並未考慮評論缺漏的問題。本論文參考採用評論之階層式注意力神經網路模型HANN,更改原模型中部分輸入特徵資訊,並調整不同層級注意力機制的權重計算方式;此模型稱為HANN-RPM,用來進行用戶對商品的評分預測。此外,另建立了一個以編碼器-解碼器架構為基礎的評論生成模型HANN-RGM,結合HANN-RPM的商品子網路架構為編碼器,不僅可用於對評分結果生成文字解釋內容,並可用於對用戶未撰寫評論的購買商品補充缺漏的評論後提供給HANN-RPM,進一步提升評分預測的效果。實驗結果顯示,不論有無缺漏評論的情況下,HANN-RPM皆較HANN有更佳評分預測效果。而當用戶具有評論缺漏的情況,透過HANN-RGM生成缺漏部份的評論補足,可令HANN-RPM預測出接近於無評論缺漏情況下的評分預測效果。此外,HANN-RGM模型透過擷取出前k筆評論中的商品語意資訊,比起NRT能生成出更長且更多樣性的評論內容,可作為評分預測之文字解釋。
  • Item
    基於CNN對於多人環境進行人臉辨識之研究
    (2020) 李聿宸
    人臉辨識於現今社會為熱門的議題,每個人皆有獨一的臉部特徵,相較於密碼或是個人證件等傳統的識別方式,人臉辨識既不需要隨時攜帶實體證件也不用擔心忘記密碼。當經由辨識而取得臉部影像後,就能夠藉由不同的臉部特徵與人臉資料庫進行比對來驗證身分。 本研究以設置於教室上方的攝影機拍攝課堂環境,取得之臉部影像解析度較低,因此人臉特徵較不突出,且亦有光線亮度不均勻以及臉部偏移等問題,導致傳統人臉辨識效果不佳。本研究運用YOLOv3結合深度學習的人臉偵測技術取得個人的臉部影像,並搭配卷積神經網路 (Convolutional Neural Network)訓練合適的模型進行人臉辨識,對於20 × 20以上之低解析度且包含不同角度的臉部影像,皆能達到97%以上的辨識準確率。由於人臉長時間下來會有些許的變化,根據實驗結果,經由四個月後之臉部影像仍能維持94%的辨識準確率。
  • Item
    利用AlphaZero框架實作與改良MiniShogi程式
    (2020) 陳品源; Chen, Pin-Yuan
    2016年3月,DeepMind的AlphaGo程式以4:1的結果擊敗了當時韓國職業圍棋9段棋士李世乭,讓電腦對局的AI程式在強化學習的路上取得了巨大的突破與成就。隨後2017年10月更提出了AlphaGo Zero方法,以100:0的比數戰勝了原本的AlphaGo Lee程式,也證明了不用人類的棋譜當作先驗知識,就可以訓練出比人類還要更強的圍棋程式。而DeepMind最終把AlphaGo Zero方法一般化成了AlphaZero方法,也訓練出了當今世界棋力最強的西洋棋與將棋程式。但相對的,DeepMind也運用了非常龐大的運算資源來訓練,才得到了最強的棋力。 本論文所研究的棋類為1970年楠本茂信所發明的5五將棋,5五將棋是一種將棋變體,特色是棋盤大小比本將棋還要小,只有5×5的盤面,將棋則有9×9,所以5五將棋是很適合一般人在硬體資源有限的情況下,來實作電腦對局的AI程式項目。 本實驗是使用AlphaZero的演算法,搭配AlphaZero General框架來實作出使用神經網路搭配強化學習來訓練的AI程式,而我們也搭配了一些已知的優勢策略做改良,讓我們可以在有限的硬體資源下,增進神經網路模型的訓練效率。 在5五將棋的訓練中,我們使用兩種方法去做改良,第一種方法是依盤面的重要性對樣本做採樣,設定中局會比終盤與開局還要高的採樣機率,期待能讓神經網路學習下中盤棋局時能比一般的版本下的更好。 第二種方式是用能贏直接贏的方式去訓練,藉由提前一回合看到終局盤面,來達到Winning Attack的效果,因為MCTS在下棋時,即便是遇到能分出勝負的走步,不一定會走出能分出勝負的那一步,導致神經網路權重會收斂的很慢,而藉由此方法,可以比一般的訓練方法還要快的收斂。 本研究所採用的兩個方法是一個成功一個失敗的結果,以實驗數據來說,如果取樣取的好,是有機會提升棋力的,但數據的表現上除了一組數據外,其他數據皆不盡理想;而Winning Attack的棋力提升的數據就非常顯著了,不過兩種方法搭配起來一起訓練時,雖然也會提升棋力,但是兩個方法沒有互相加成的效果。
  • Item
    基於強化學習之Surakarta棋程式開發與研究
    (2019) 陳毅泰; Chen, Yi-Tai
    Surakarta棋是起源於印尼爪哇島的一種雙人零和遊戲,原名Permainan,在印尼文是遊戲之意,後來由法國人命名為Surakarta,取自當地地名「梭羅」。遊戲中獨一無二的吃子方法是這種棋的最大亮點,透過棋盤外圍的環狀構造,將對手的棋子一網打盡後,方可獲得最後的勝利。 除了現實的遊戲外,Surakarta棋也是Computer Olympiad定期舉辦的比賽項目之一,歷年來誕生了不少棋力高強的程式。而這兩年的AlphaGo和AlphaZero將電腦對局推向了新的里程碑,也有了新的契機,希望能夠將Surakarta棋程式的棋力向上提升。 本研究將利用AlphaZero的架構,搭配不同的參數及架構上的改良,訓練及實做Surakarta棋的AI和視覺化平台。除了單一神經網路的版本,研究中也嘗試了一種新的多神經網路架構,將遊戲的過程分成三階段並訓練三種不同的神經網路來各司其職,分別為「開局網路」、「中局網路」和「殘局網路」。其中,使用殘局網路版本的AlphaZero算法和DTC殘局庫做了交叉驗證,顯示其正確率高達99%。
  • Item
    基於AlphaZero作法之國際跳棋程式開發及研究
    (2020) 簡沅亨; Chien, Yuan-Heng
    國際跳棋是由民族跳棋演變而來的。據說在一七二三年,居住在法國的一名波蘭軍官把六十四格的棋盤改為一百格,因此又被稱為「波蘭跳棋」。國際跳棋擁有flying king和連吃的特殊規則,使得下法有趣多變,深受大眾的喜愛。 近年來,AlphaZero演算法在多種棋類AI訓練上,都獲得極大的成功。因此,本研究使用AlphaZero的架構來實作國際跳棋的AI。然而,國際跳棋擁有連吃路徑的問題,無法以單次神經網路輸出來完整表達連吃的路徑,所以本研究設計連續走步,藉由神經網路的多次走步輸出來完整描述連吃的路徑。 為了提高國際跳棋AlphaZero的訓練效率,本研究使用大贏策略來加速訓練,讓神經網路能夠往大贏的方向去訓練。經過100迭代訓練之後,使用大贏策略訓練的神經網路模型與原始AlphaZero版本訓練的神經網路模型相比,擁有較高的勝率。
  • Item
    改進AlphaZero的大贏策略並應用於黑白棋
    (2019) 張乃元; Chang, Nai-Yuan
    DeepMind的AlphaZero演算法在電腦遊戲對局領域中取得了巨大的成功,在許多具有挑戰性的遊戲中都取得了超越人類的表現,但是我們認為AlphaZero演算法中仍然有可以改進的地方。 AlphaZero演算法只估計遊戲的輸贏或是平手,而忽略了最後可能會獲得多少分數。而在像是圍棋或是黑白棋這類的佔地型遊戲中,最後所得到的分數往往會相當大地左右遊戲的勝負,於是我們提出大贏策略:在AlphaZero演算法中加入對於分數的判斷,來改進演算法的效率。 在本研究中使用8路黑白棋作為實驗大贏策略效果的遊戲,我們使用並且修改網路上一個實作AlphaZero演算法的開源專案:alpha-zero-general來進行我們的實驗。經過我們的實驗之後,使用大贏策略的模型相比未使用的原始AlphaZero模型,在經過100個迭代的訓練之後有著高達78%的勝率,證明大贏策略對於AlphaZero演算法有著十分顯著的改進效益。