資訊工程學系
Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/60
本系前身「資訊教育學系」成立於民國七十四年,首先招收大學部學生,民國九十年成立資訊工程研究所碩士班,而後於民國九十五年進行系、所調整合併為「資訊工程學系」;並於九十六年成立博士班。本系目前每年約招收大學部四十餘人,碩士班六十餘人,博士班約五人,截至民國一百零四年十一月止,總計現有大學部一百九十多人,碩士班一百二十多人,博士班二十三人,合計學生人數約為三百三十多位。
News
Browse
4 results
Search Results
Item LSTM 法則應用於連續手勢辨識之研究──手勢辨識系統軟體與硬體於 FPGA 實作(2020) 鄧凱中; Teng, Kai-Chung本論文考量現實應用的方便性與實際應用,選擇現場可程式邏輯門陣列(Field Programmable Gate Array, FPGA)來硬體電路實現,並對電路運算單元參數化,以應變需求的變化。而演算法使用長短期記憶(Long Short-Term Memory,LSTM) [1]來訓練模型與手勢辨識。 LSTM 作為設計電路之模型,跟傳統遞歸神經網路(Recurrent Neural Networks, RNN) [2]不同的是,RNN 同一時間點 t 的輸入都在同一層面,將上一層的輸出當作下一層的輸入,但時間點 t 產生的梯度在往後傳遞幾層後就消失為一大難題。而 LSTM 使用 Input Gate、Output Gate 與 Forget Gate 三個控制閘成功的解決時間軸上梯度消失的問題,因此選擇 LSTM 為本論文的演算法則。 LSTM 模型以 Keras [3]平台來訓練與驗證,辨識率高達 98%。本論文的訓練與辨識資料庫使用擁有陀螺儀跟加速器的手機做為 Sensor 來收集手勢資料,並收集本實驗室多人的動作為資料庫,並對資料做圖形化來篩選優良的訓練資料。圖形或者影像辨識需要瞭解艱深且複雜的公式,還必須有能力編碼將公式實踐出來,對手勢的辨識如果使用傳統影像辨識的方法將會增加運算的時間、大量的運算資源消耗與記憶體儲存空間的需求。本論文分別使用手機陀螺儀與加速器的 X、Y、Z 軸數據為訓練資料,與傳統的影像辨識相比,差別為輸入資料每一筆的維度變成一維,節省硬體儲存資源與運算的複雜度。Item 低面積BWNN積體電路設計及應用於人臉辨識之研究(2019) 張茗雅; Chang, Ming-Ya人工智慧議題在近幾年來竄起,以及類神經網路的快速發展,使得我們的生活逐漸加入了類神經網路的應用,例如:股價預測、語音辨識、人臉辨識,尤其在APPLE公司推出了加入臉部辨識的手機機型後,帶給人們更多的便利性,也讓人臉辨識議題得到更多的關注。 然而裝載在行動裝置上勢必需要低功率且不能使用太多的硬體資源,因此本論文的研究目的是設計低面積電路於FPGA上實作人臉辨識。不過利於圖像辨識的摺積神經網路是利用浮點數做運算,這會造成硬體的消耗資源上升,為此本論文使用二元化類神經網路來實現人臉辨識,藉由量化模型的方式下降硬體面積,二元化類神經網路相較於摺積神經網路辨識率是較低的,於是本論文捨棄使用量化活化函數只保留量化參數,簡稱BWNN(Binarized Weights Neural Networks),以此可以達到與摺積神經網路相匹敵的辨識效能。 本論文亦設計Partial output架構,此能更加降低硬體的消耗資源,依實驗結果顯示,本論文能兼具低面積、低消耗功率且又有著高辨識率的優點,因此可以在更小的晶片上實現人臉辨識系統,使得在生活中能更被廣泛應用。Item 以軟體模型為基礎的二元化類神經網路FPGA實現及驗證之研究(2018) 林琮憲; Lin, Tsung-Xian本論文主要提出一個以C語言為基礎的模型,能夠使深度學習模型架構更容易在硬體電路上實現並驗證。一般深度學習硬體實現方式是從類神經網路模型架構中取出參數,並實現於硬體電路上,但是一個典型的類神經網路模型會擁有龐大的參數及複雜的格式,再加上深度學習軟體都是在高階語言的環境下所架設,內部運作方式複雜,若直接在硬體電路上匯入參數會相當困難。本論文提出一個以C語言為基礎的模型來簡化深度學習硬體設計,由於C語言之架構與硬體描述語言(Verilog)相似,因此本論文以C語言做為實現網路模型之軟體,使得硬體電路在實現網路架構上更加容易。 本論文以一般的摺積類神經網路應用於圖像之辨識模型為例,由於一般的摺積類神經網路之權重為浮點數,在硬體上佔用許多的記憶體資源及複雜的運算。因此本論文採用二元化類神經網路之法則,以Sign Function將32bit浮點數簡化為1bit二進制碼。本論文的運算方式基於以乘法器及加法器做運算,以驗證硬體的正確性。 由本論文實驗可知,在C語言的實現成功後,相關的硬體驗證可更有效率且正確。Item 以BNN與AlexNet為基礎適用於CIFAR10圖形辨識之積體電路架構設計(2017) 王愷薇; Wang, Kai-Wei本論文以FPGA實作AlexNet摺積類神經網路模型之硬體電路架構,並以CIFAR10全彩圖像資料庫作為圖像辨識數據,設計適用於該資料庫的圖形辨識電路架構,傳統的摺積類神經網路以浮點數形式存取運算所用到的相關參數,同時運算方式較為複雜,這種模式不僅會增加記憶體的存取資源消耗,也會造成運算的負擔。本論文將二元化類神經網路技術結合至電路設計中,其最主要的核心概念是將權重及運算結果透過二元化相關演算法簡化為二進制表示法,並使用XNOR做位元運算,此作法不僅能降低FPGA資源消耗,同時也能提升運算效率。 本論文選用AlexNet作為設計電路之模型,AlexNet對於全彩圖像的辨識結果優於LeNet5,而AlexNet相較於其他結構複雜的摺積類神經網路模型更適合實作於硬體電路,雖然AlexNet所使用的參數較多,以原始32bit 浮點數存取權重確實在硬體上難以實現,但利用二元化類神經網路便可將權重簡化至1bit二進位碼,而運算子則不需要使用到浮點數的加法器與乘法器,這不單是降低內建記憶體及暫存器資源使用,更提升存取記憶體的效能。 依據實驗結果,本論文所提出之硬體架構相較於近期相關研究有低面積資源消耗之優點,且辨識精確度不亞於其他研究架構,對於現今人工智慧晶片發展領域,本論文所提出之硬體架構著實具有競爭價值。