以軟體模型為基礎的二元化類神經網路FPGA實現及驗證之研究

No Thumbnail Available

Date

2018

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

本論文主要提出一個以C語言為基礎的模型,能夠使深度學習模型架構更容易在硬體電路上實現並驗證。一般深度學習硬體實現方式是從類神經網路模型架構中取出參數,並實現於硬體電路上,但是一個典型的類神經網路模型會擁有龐大的參數及複雜的格式,再加上深度學習軟體都是在高階語言的環境下所架設,內部運作方式複雜,若直接在硬體電路上匯入參數會相當困難。本論文提出一個以C語言為基礎的模型來簡化深度學習硬體設計,由於C語言之架構與硬體描述語言(Verilog)相似,因此本論文以C語言做為實現網路模型之軟體,使得硬體電路在實現網路架構上更加容易。 本論文以一般的摺積類神經網路應用於圖像之辨識模型為例,由於一般的摺積類神經網路之權重為浮點數,在硬體上佔用許多的記憶體資源及複雜的運算。因此本論文採用二元化類神經網路之法則,以Sign Function將32bit浮點數簡化為1bit二進制碼。本論文的運算方式基於以乘法器及加法器做運算,以驗證硬體的正確性。 由本論文實驗可知,在C語言的實現成功後,相關的硬體驗證可更有效率且正確。

Description

Keywords

深度學習, 摺積類神經網路, C語言, FPGA, BNN

Citation

Collections

Endorsement

Review

Supplemented By

Referenced By