海洋環境科技研究所(104學年度起合併至地科系)

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/64

在全球環境急遽變遷及資源耗竭下,環境議題日受重視,「環境教育」自1970年代起即成為先進國家積極推動的專業;近年來聯合國教科文組織更倡議將2005~2014訂為「永續發展教育十年」,呼籲各國積極推動環境教育及「永續發展教育」之研究與發展。國立台灣師範大學環境教育研究所為國內第一個設立的「環境教育研究所」,於民國八十二年開始招收碩士班研究生,並於民國九十五學年度起增設博士班,積極培養環境教育專業人才、推動學校及社會之環境教育與學術研究。近年則積極參與區域與地方永續發展相關研究及推廣教育,推動綠色學校、永續校園、綠色大學、自然教育中心、環境學習中心等,並與國際著名大學或研究中心合作,朝向亞太「永續教育區域專業中心」(Regional Center for Expertise on Education for Sustainable Development)發展。

本所努力方向:
  1. 學術研究國際化,進行環境教育及永續發展創新研究,提昇學術實力;
  2. 深化環境教育相關理論與應用研究,培養專業人才;
  3. 進行環境教育教與方案之研發、應用與評估,提昇環境教育專業品質;
  4. 協助政府與民間進行環境教育系統規劃、政策研究與人力培訓發展,增進整體社會環境倫理與典範轉移;
  5. 協助政府與民間運用不同自然環境與文化資源,開創環境學習場域,提供全民多元環境學習機會,提昇國民環境素養。

依據本所98.5.22課程委員會、理學院98.5.30課程委員會及本校98.6.2.校級課程委員會三級課程委員會通過之「環境教育研究所課程架構與學生能力指標」, 本所之發展願景、教育目標及學生能力指標如下:

一、發展願景
  1. 發展成為世界第一流的環境教育研究與教學機構,引領國內環境教育之推展;
  2. 學術研究國際化,進行環境教育及永續發展創新研究,提昇學術研究實力;
  3. 環境關懷在地化,培育具有深刻環境關懷及環境教育專業能力之人才;
  4. 學理探討深刻化,奠立環境教育相關理論及哲學基礎,培育兼具科學基礎與環境倫理之優秀研究人才;
  5. 環境素養跨界化,提升科學及人文素養,培養理解自然與人文領域之整合能力,推動永續科學及永續教育之研究與社會實踐
二、教育發展目標
(一)博士班教育目標:
  1. 培育具有精深學術素養與環境哲思基礎的環境教育學術研究人才;
  2. 培育國家環境教育領域之領導與創新專業人才;
  3. 培育兼具科學及人文素養,發展永續科學與永續教育領域之研究人才;
  4. 培育大專院校與人才培訓機構之環境教育相關領域研究與教學師資;
  5. 培育國內外環境保育、環境學習、永續產業的研究教學及專業研發人才。
(二)碩士班教學目標:
  1. 培育具備環境倫理及環境素養之環境教育專業人才;
  2. 培育以永續發展科學為基礎的永續教育推動及管理人才;
  3. 培育各級學校具有學科整合能力之環境系統管理及環境教育規劃人才;
  4. 培養環境保護與自然保育行政部門的教育訓練規劃及整合推動之人才;
  5. 培養民間團體、自然教育中心、環境學習中心等領域之環境教育專業課程設計、活動企畫經營的專業人才;
  6. 培養協助企業社會責任、具有環境溝通與推廣能力之人才。

News

Browse

Search Results

Now showing 1 - 5 of 5
  • Item
    Typhoon Kai-Tak: An ocean's perfect storm
    (American Meteorological Society, 2011-01-01) Chiang, T.-L.; C.-R. Wu; L.-Y. Oey
    An unusually intense sea surface temperature drop (ΔSST) of about 10.8°C induced by the Typhoon Kai-Tak is observed in the northern South China Sea (SCS) in July 2000. Observational and high-resolution SCS model analyses were carried out to study the favorable conditions and relevant physical processes that cause the intense surface cooling by Kai-Tak. Upwelling and entrainment induced by Kai-Tak account for 62% and 31% of the ΔSST, respectively, so that upwelling dominates vertical entrainment in producing the surface cooling for a subcritical storm such as Kai-Tak. However, wind intensity and propagation speed alone cannot account for the large ΔSST. Prior to Kai-Tak, the sea surface was anomalously warm and the main thermocline was anomalously shallow. The cause was a delayed transition of winter to summer monsoon in the northern SCS in May 2000. This produced an anomalously strong wind stress curl and a cold eddy capped by a thin layer of very warm surface water west of Luzon. Kai-Tak was the ocean’s perfect storm in passing over the eddy at the “right time,” producing the record SST drop and high chlorophyll-a concentration.
  • Item
    Blocking and westward passage of eddies in the Luzon Strait.
    (ELSEVIER, 2010-10-01) Sheu, W.-J.; C.-R. Wu; L.-Y. Oey
    Satellite observations have shown the abundance of generally westward-propagating eddies in the subtropical regions in the North Pacific Ocean, especially north of 10衹. Eddies transport mass, and can significantly impact the circulation as well as the heat, salt and nutrient balances of the western Pacific marginal seas. This paper uses a numerical model to examine the conditions when eddies can or cannot freely propagate westward through the Luzon Strait into the South China Sea (SCS). Composite analyses on the 10-year model data show that the fates of eddies depend on the strength and path of the Kuroshio. In one path that exists mostly during fall and winter, the Kuroshio loops westward into the SCS, the potential vorticity (PV) across the current is weak, and eddies are likely to propagate freely through the Luzon Strait. In another path, which exists mostly during spring and summer, the Kuroshio tends to leap directly northward bypassing the SCS, the PV across it strengthens, and eddies are then blocked and are constrained to also follow the northward path. Nonlinear eddy-current interaction and the existence of a cyclone north of the Luzon Island during the looping phase explain why eddies of both signs can pass through the strait. It is shown also that the upstream state of the Kuroshio in the western tropical Pacific plays an important role in dictating the different paths of the Kuroshio. The looping (leaping) path is caused by a weakened (stronger) Kuroshio transport related to the northward (southward) shift of the North Equatorial Current in wintertime (summertime).
  • Item
    Why are there upwellings on the northern shelf of Taiwan under northeasterly winds?
    (American Meteorological Society, 2010-06-01) Chang, Y.-L.; L.-Y. Oey; C.-R. Wu; H.-F. Lu
    Upwellings are observed on the northern shelf of Taiwan during northeasterly winds. Analytical and realistic numerical models are used to explain how vertical motions are created by divergence and convergence produced by wind acting on the vorticity field of two strong jets: the Kuroshio and the Taiwan Warm Current. The seaward increase in cyclonic vorticity near the Kuroshio’s western edge favors a stronger Ekman transport away from the jet, producing upwelling at the shelfbreak under a northeasterly wind. A similar mechanism for generating vertical motions is found across the Taiwan Warm Current. The numerical model results indicate that the vorticity effects can account for up to 30%–50% of the total variation in the surface Ekman transport. Except during summer’s weak southwesterlies, northeasterly wind is dominant over the East China Sea, suggesting that the vorticity effects may be prominent in the observed shelfbreak upwelling in nonsummer months.
  • Item
    Air-sea interaction between Tropical Cyclone Nari and Kuroshio
    (American Geophysical Union (AGU), 2008-06-01) Wu, C.-R.; Y.-L. Chang; L.-Y. Oey; C.-W.J. Chang; Y.-C. Hsin
    The air-sea interaction between tropical cyclone Nari (Sep/6 – 16/2001) and Kuroshio is studied using satellite observations and an ocean model. Nari crossed the Kuroshio several times, which caused variations in typhoon intensity. Nari weakened when it was over the shelf north of Kuroshio where cooling took place due to mixing of the shallow thermocline. The cyclonic circulation penetrated much deeper for the slowly-moving storm, regardless of Nari’s intensity. Near-inertial oscillations are simulated by the model in terms of the vertical displacement of isotherms. The SST cooling caused by upwelling and vertical mixing is effective in cooling the upper ocean several days after the storm had passed. At certain locations, surface chlorophyll-a concentration increases significantly after Nari’s departure. Upwelling and mixing bring nutrient-rich subsurface water to the sea surface, causing enhancement of phytoplankton bloom.
  • Item
    Bimodal Behavior of the Seasonal Upwelling off the northeastern coast of Taiwan
    (American Geophysical Union (AGU), 2009-03-01) Chang Y.-L.; C.-R. Wu; L.-Y. Oey
    Observations over the outer shelf and shelf break off the northeastern coast of Taiwan indicate a curious seasonal variability of upwelling. At deeper levels 100 m below the surface, upwelling is most intense in summer but weaker in winter. Nearer the surface at approximately 30 m below the surface, the opposite is true and the upwelling is stronger in winter than in summer. Results from a high-resolution numerical model together with observations and simple Ekman models are used to explain the phenomenon. It is shown that the upwelling at deeper levels (∼100 m) is primarily induced by offshore (summer) and onshore (winter) migrations of the Kuroshio, while monsoonal change in the wind stress curl, positive in winter and negative in summer, is responsible for the reversal in the seasonal variation of the upwelling near the surface (∼30 m). This mechanism reconciles previous upwelling data.