物理學系
Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/56
本系師資陣容堅強,現有教授15人、副教授12人、助理教授2人、名譽教授5人,每年國科會補助之專題研究計畫超過廿個,補助之經費每年約三千萬,研究成果耀眼,發表於國際著名期刊(SCI)的論文數每年約70篇。
近年來已在課程方面 著手變革,因應學子的各種不同的生涯規劃與需求,加強職業輔導與專業能力的提升,增加高科技相關課程,提供光電學程(光電半導體、半導體製程技術、近代光 學與光電科技等)、凝態物理、表面物理與奈米科技、高能與理論物理、生物物理、應用物理等研究發展專業人才,並配合博士逕讀辦法,讓大學部學生最快能在五 年內取的碩士(透過碩士班先修生),八年內取得博士,有助於提升本系基礎與應用研發能量,為各學術研究機構與業界高科技創新與研發人力(包括在光電業、半 導體製造業、電腦週邊產業等)。
本系亦推動網路教學(科學園)與數位科學研究,作為提供科學教學與學習系統平台的強化支援,並除了原先開設的教育學程外,多增強學生英語教學的能力,與世界科學教師系統連結,在教師從業方面,塑造世界級的物理科學教師,發揮教育影響力。
News
Browse
8 results
Search Results
Item 渦旋光對低維度材料與磁性薄膜異質結構之光電響應增益探討(2024) 林士傑; Lin, Shih-Chieh本研究將藉由將拉蓋爾-高斯(Laguerre-Gaussian, LG)光束照射在磁性材料與低維度材料的異質結構上,以探討帶有軌道角動量的渦旋光對其所產生的效應。由於LG光束具有特殊的電場分佈,藉由理論推測可能會與材料表面的電子海進行交互作用進而產生環形電流及垂直磁場。在材料的選擇上我們使用鈷作為鐵磁性材料,而低維度材料是選用具有相近能隙的半導體材料:MoS2及C60來進行探討。首先我們探討Co與MoS2的異質結構,由於在先前的研究中發現在Co/MoS2系統中鈷原子會使MoS2具有特殊的磁各異向性,提供了Co/MoS2異質結構與LG光束間交互作用的可能性。再來我們試著於鈷薄膜中摻入C60薄膜,由先前的研究指出Co與C60會有電子交換行為使得C60會帶有磁性,因此我們便以Co/C60/Co/MoS2異質結構來探討此結構與Co/MoS2異質結構間的差異,進一步研究鐵磁薄膜與低維度材料異質結構對LG光束的響應。最後,我們試著改變鐵磁材料與低維度材料的結構,由層狀堆疊改為合金的結構,探討Co-C60合金薄膜對渦旋光間的響應。研究結果顯示在二硫化鉬上透過蒸鍍法鍍上一層鈷薄膜後,會使得該元件對LG光的光電響應更為明顯;另外在Co/C60/Co/MoS2異質結構上發現在鈷薄膜中摻入C60薄膜的多層堆疊結構有著更顯著的光電響應,並且對LG光束也有著更強的反應。另外,在Co-C60合金的實驗中發現,對其照射渦旋光時此合金薄膜的阻值會隨著軌道角動量增加而上升。在物理機制的探討中,我們藉由從電子自旋的疊加態分佈,去探討LG光束所造成的外加磁場對光電響應的影響。Item 雷射照射下石墨烯/二硫化鉬與六方氮化硼/二硫化鉬雙層異質結構之穩定性(2023) 許聖郁; Hsu, Sheng-Yu本研究使用拉曼光譜及螢光光譜,研究了二硫化鉬和石墨烯/二硫化鉬和六方氮化硼/二硫化鉬等結構在不同雷射功率下的穩定性。結果顯示,在石墨烯/二硫化鉬和六方氮化硼/二硫化鉬等異質結構中,薄膜能夠隔絕大氣並增強二硫化鉬受雷射影響的穩定性。原子力顯微鏡表面形貌和拉曼光譜顯示,經過56 mW、30 mW雷射照射裸露的二硫化鉬後,二硫化鉬會凸起並發生結構變化,並且拉曼訊號在30分鐘後衰減至原本的10 %。結構變化的過程中,A1g和E2g兩個特徵峰會發生紅移,A1g的紅移是由氧化產生的p-dope所引起,而E2g則是由結構變化產生的應變所導致。對於石墨烯/二硫化鉬系統,我們觀察到不同的光譜特徵。在雷射照射過程中,拉曼特徵峰和光致螢光強度並沒有快速下降,這顯示結構變化現象被抑制。而對於六方氮化硼/二硫化鉬30 mW的實驗組中,觀察到拉曼特徵峰和光致螢光強度呈現先上升的趨勢,因此推測在略低於30 mW雷射的環境下,六方氮化硼/二硫化鉬能夠保持穩定。結果顯示石墨烯/二硫化鉬受雷射照射影響的穩定性最佳,六方氮化硼/二硫化鉬次之,未經覆蓋而裸露的二硫化鉬穩定性最差。Item 利用軌道角動量光源調控二維材料記憶體元件之研究(2023) 王柏文; Wang, Po-Wen二維過渡金屬二硫化物(2D TMD)材料以其出色的固有性質和巨大的電子應用潛力而聞名,尤其在記憶體應用方面更具潛力。最近的研究表明,基於二硫化鉬的元件通過將載流子儲存在功能性陷阱結構中展現出記憶特性。在這裡,我們提出了一種新的方法,通過照射具有不同軌道角動量(Orbital Angular Momentum, OAM)的渦旋光於二硫化鉬電晶體上,觀察其記憶特性。隨著拉蓋爾-高斯光束所給予的拓撲電荷(ℓ)增加,將有更多載流子從功能性陷阱結構中釋放,從而改變裝置通道中的載流子濃度。在MoS2電晶體上照射OAM光可以有效調節MoS2的電學特性,如光電流、遲滯窗口和載流子儲存性能等。在不同的光學特性條件下例如曝光時間、光強度和測量溫度,渦旋光仍然能獨立產生影響。我們對這個元件進行了記憶體特性的量測,展現出出色的耐久性和等待時間。此外,我們還觀察到不同結構的記憶體元件中,渦旋光能夠調控記憶體的現象。我們相信,透過軌道角動量光可調控的二硫化鉬記憶體元件可能為未來先進電子應用中的光學記憶體裝置提供新的操作自由度。Item 二硫化鉬相關異質結構分析(2021) 許銓喆; Hsu, Chuan-Che我們分析二硫化鉬異質結構的物理特性,我們將鐵磁性材料(鐵、鈷鈀合金)和功能性材料(金、C60)鍍在二硫化鉬的薄片上。所有實驗中的二硫化鉬都使用化學氣相沉積(CVD)來製備於二氧化矽/矽(1 0 0)上。在鍍上異質結構之前,我們都會利用原子力顯微鏡(AFM)、光致發光光譜(PL)和拉曼光譜(Raman)來檢查二硫化鉬的基本性質。形貌上,發現一些有趣的現象:高溫下(約500 k)在二硫化鉬上鈷鈀合金的實驗中觀察到有奈米顆粒會聚集在單層二硫化鉬的邊緣,然而在多層二硫化鉬中這些奈米顆粒則在每層邊緣平行排列,且我們也觀察到光致發光的quenched (淬滅)現象,這證明高溫下鈷鈀合金也有覆蓋在二硫化鉬的平台表面上且非常的平坦,粗糙度約小於±0.5 nm,相較之下,常溫下成長在二硫化鉬的鈷鈀合金薄膜卻很粗糙(粗糙度~±2 nm)。再來是關於二硫化鉬上金(2~8 nm),我們觀察到高度反轉的現象。鍍金前,二硫化鉬到基板二氧化矽的台階高度為 +0.66 nm,這大約是正常的二硫化鉬的單層厚度。鍍金後,二硫化鉬到基板之間的高度反轉成(約-1.0至-3.5 nm)。此高度反轉現象的原因是金在二硫化鉬和基板上的不同生長模式,且這機制會取決於金的鍍膜時的溫度和金的厚度。關於磁性方面,令人驚訝的是我們觀察到鐵磁性材料(鐵、鈷鈀合金)/二硫化鉬與旁邊的基板二氧化矽之間有magnetic decoupling(磁去耦合)的現象。儘管二硫化鉬厚度(~0.66 nm)比鐵或鈷鈀合金的厚度更薄,關於3.6 nm的鐵在二硫化鉬上的矯頑場 (Hc) 為 28 ±5 Oe,然旁邊區域基板二氧化矽上的3.6 nm Fe的Hc約為 58 ±5 Oe,可看出矯頑場有明顯的差異(約30 Oe),之所以會有magnetic decoupling是由於鐵在不同基材上具有明顯的界面的磁各異向性。且也觀察到鈷鈀合金在二硫化鉬上也有類似的現象,在二硫化鉬上的鈷鈀合金(8 nm)的Hc為 52 ±3 Oe,旁邊的基板二氧化矽上的鈷鈀合金Hc 為 64 ±3 Oe,可得知鈷鈀合金上也會觀察到magnetic decoupling的現象。 最後,關於有機材料在二硫化鉬上的研究,隨著C60覆蓋度的增加,PL峰值從原本是二硫化鉬主導的1.83 eV變為C60主導的1.69 eV,此外在 C60/二硫化鉬這異質結構上證明了連續雷射會導致C60脫附。大約10 mW/µm2 的雷射功率就足以讓二硫化鉬薄片中的 20 nm C60脫附,所以可用這方法設計約為 500 nm微觀圖案。除了形態結構之外,還通過連續雷射誘導C60脫附的方法,來觀察在C60/二硫化鉬上微觀圖形的PL,關於上述在二維材料二硫化鉬基本研究(形貌,磁性,有機材料雕製微觀圖形),相信這對未來的二維材料的二硫化鉬自旋電子應用或元件設非常有幫助。Item Item 利用雷射對富勒烯/二硫化鉬異質結構的效應雕製微觀圖形(2020) 馬康耀; Ma, Kang-Yao本次實驗的內容主要在探討,成長於二氧化矽(SiO2)基板上的二硫化鉬(MoS2)與C60組合而成的樣品,在綠光雷射下的拉曼效應(Raman effect)以及光致發光(Photoluminescence PL)的結果,以及其表面形貌;並且藉由改變不同雷射功率,觀察C60的脫附現象(desorption)。 樣品的製備為利用化學氣象沉積(CVD)在二氧化矽(SiO2)基板上沉積出二硫化鉬(MoS2)薄膜,再利用超高真空鍍膜技術將C60鍍上;利用原子力顯微鏡(AFM)與拉曼效應、光致發光光譜分析對C60/MoS2樣品的表面結構以及半導體性質進行量測。實驗結果發現,改變不同的雷射功率,以及照射時間,可以對C60的光致發光特徵峰造成影響,進而探討雷射對C60造成的脫附現象;實驗中發現使用波長532 nm功率 5 mW的雷射以1分鐘與6分鐘的照射時間,分別可以使樣品造成 C60的PL峰值以及MoS2的PL峰值的下降,並利用此現象對C60/MoS2異質結構進行微觀圖形的雕製。Item 二維材料介面導致鐵薄膜磁耦合分離現象(2018) 林宗佑; Lin, Zong-You本實驗旨在於探討鐵磁薄膜沉積在單層二硫化鉬(MoS2)與二氧化矽基板(SiO2 /Si(100))兩種不同表面上產生的矯頑場(coercivity)差異,其鐵薄膜具有不連續的磁耦合分離性質,並分析推測此現象的可能來源。 我們利用自製的化學氣相沉積系統(Chemical Vapor Deposition)合成大量二硫化鉬單層薄膜於二氧化矽基板,並以原子力顯微鏡(Atomic Force Microscope)、拉曼光譜儀(Raman spectrum)驗證其大多為單層的厚度結構。其後於超高真空環境(10-9 torr)蒸鍍鐵薄膜於其上,再以磁光科爾顯微鏡(magneto optical kerr mi-croscope)量測之。結果上,我們發現樣品表面的磁滯曲線(hysteresis loop)呈現非方正的鐵磁曲線,呼應我們對於鐵膜微觀表面上具有許多磁性粒子團的預測,且異質介面導致鐵薄膜在不同介面上有著相異的矯頑場,是為鐵薄膜磁耦合分離現象,此現象伴隨著鐵薄膜厚度提升而逐漸消失。Item 硫磷化鉬修飾於p型矽基板之產氫光陰極(2017) 吳佾修; Wu, Yi-Hsiu化石燃料之消耗,使能源短缺之問題浮出檯面,開發新再生能源儼然成為全球非常急迫之課題。本研究結合太陽能與氫能源,以經表面粗化成金字塔型的p型矽半導體作為光陰極進行光催化水分解。為了幫助電子傳遞至水溶液,以MoS2-xPx作為共催化物,利用滴落塗佈法將其修飾於矽晶片上。藉能量色散x射線光譜量測作為磷摻雜二硫化鉬之共催化物MoS2-xPx定性與定量之分析,其結果顯示磷之實際摻雜量近似於估計值;藉循環伏安法、拉曼光譜量測與x射線吸收光譜量測,顯示二硫化鉬經磷之摻雜能使活性端裸露,進而提升水分解之效率,若是摻雜過量則會導致取代反應過於劇烈,使活性點減少。於眾多比例中以x = 0.25之磷摻雜比例其特性最好,其進行光催化水分解之起始電位與0 V下光電流密度分別為0.29 V與-23.8 mA cm-2。 然而滴落塗佈法雖然便利且快速,卻不能將共催化物完整覆蓋於矽晶片上。本研究藉原子層氣象沉積將二氧化鈦完整覆蓋於經表面粗化成金字塔型矽晶片表面作為保護層,以防止矽與氧離子結合產生二氧化矽以阻礙電子傳遞。結果顯示具二氧化鈦保護層之光陰極,二氧化鈦薄膜層越厚,其電流穩定性越好,然而其光生電流值越低。