物理學系

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/56

本系師資陣容堅強,現有教授15人、副教授12人、助理教授2人、名譽教授5人,每年國科會補助之專題研究計畫超過廿個,補助之經費每年約三千萬,研究成果耀眼,發表於國際著名期刊(SCI)的論文數每年約70篇。

近年來已在課程方面 著手變革,因應學子的各種不同的生涯規劃與需求,加強職業輔導與專業能力的提升,增加高科技相關課程,提供光電學程(光電半導體、半導體製程技術、近代光 學與光電科技等)、凝態物理、表面物理與奈米科技、高能與理論物理、生物物理、應用物理等研究發展專業人才,並配合博士逕讀辦法,讓大學部學生最快能在五 年內取的碩士(透過碩士班先修生),八年內取得博士,有助於提升本系基礎與應用研發能量,為各學術研究機構與業界高科技創新與研發人力(包括在光電業、半 導體製造業、電腦週邊產業等)。

本系亦推動網路教學(科學園)與數位科學研究,作為提供科學教學與學習系統平台的強化支援,並除了原先開設的教育學程外,多增強學生英語教學的能力,與世界科學教師系統連結,在教師從業方面,塑造世界級的物理科學教師,發揮教育影響力。

News

Browse

Search Results

Now showing 1 - 10 of 17
  • Item
    Co/FePS3與Pd/Mg/[Fe/Pd]n異質結構的磁性與功能性
    (2023) Alltrin Dhana Raja Gopal; Alltrin Dhana Raja Gopal
    在本論文中,我們首先研究鐵磁/二維反鐵磁材料(Co/FePS3)異質結構的介面磁耦合,這對於未來在自旋電子元件應用中至關重要。原子力顯微鏡揭露機械剝離法製備的FePS3薄膜表面存在約單層的缺陷。隨著Co層均勻地覆蓋於FePS3層,其表面粗糙度降至~ ±0.5 奈米。在磁特性方面,Pd/Co/FePS3異質結構表現出水平磁各向同性,並且當溫度從~85 K升高到~110-120 K時,磁矯頑力急劇降低<50%,這與FePS3的尼爾溫度相似。因此,該結果支持Co和 FePS3 薄膜之間界面磁耦合的想法。隨後,即使在高達 473 K的退火後,Co和 FePS3 薄膜之間的磁耦合仍然有效。此外,X射線磁圓二色性證實了沿平行於Co薄膜磁化的方向存在非補償Fe磁矩。淨Fe磁矩應該在調控水平異向性的Co薄膜和垂直異向性的FePS3層之間的磁耦合中發揮重要作用。 在接下來的研究中,我們探討氫氣對Mg/[Fe/Pd]x/Pd和[Fe/Pd]x/Pd多層薄膜的磁性響應。我們製備了不同Fe層厚度(0.1, 0.2, 0.4 nm)和不同週期的Fe/Pd多層薄膜,並利用磁光柯爾效應在大氣和氫氣環境下觀測樣品的磁特性。實驗結果顯示Fe/Pd多層膜在大氣和真空中表現出相同的磁特性。然而當樣品暴露於1巴的氫氣後磁矯頑力迅速下降,且在氫氣環境中保持穩定。即使樣品離開氫氣環境,此氫化效應仍可維持長達約1個小時,並且該效應對磁特性的影響是可逆的。此外,在真空和氫氣環境下皆可觀測到清晰的磁域翻轉影像,與磁滯曲線的變化相呼應。緊接著,我們使用氬氣對Mg/[Fe/Pd ]x/Pd多層膜表面轟擊,以產生微小的缺陷,使得薄膜相對於原始狀態具有更強的磁性響應。
  • Item
    有機磁性半導體—富勒烯與鈷的交互作用探討
    (2022) 徐健真; Hsu, Chien-Chen
    在自旋電子學中,磁性半導體是其中一個重要研究領域,其中有機材料與磁性材料的電子交互作用,是如何影響有機-磁性複合材料的磁性與電子傳輸行為,更是一個需要深入探討的領域。本研究使用物理氣相沉積法 ( Physical Vapor Deposition, PVD ),於超高真空系統 ( Ultra-High vacuum system, UHV ) 中,選擇在Al2O3 與Si兩種基板上,成長了C60/Co/C60與C60/Co的三層膜與雙層膜結構。透過探討薄膜磁性、表面形貌、光致螢光光譜( Photoluminescence, PL ) 與拉曼光譜 ( Raman Spectrum ) 、電壓-電流性質、磁阻響應與霍爾效應 ( Hall effect ) 在不同溫度的真空熱退火前後的變化,並以共鍍方式成長了不同比例的Co-C60 複合材料,並與上述退火實驗結果進行比較。本實驗分為兩大主軸,第一部分為C60薄膜與C60/Co 層膜在500 ℃ 下的真空退火,由表面形貌量測中,發現成長於Al2O3基板的C60/Co 雙層膜於退火後,形成了以Co原子為主的奈米島分區結構,以及C60 薄膜經過退火後,形成了近十奈米的原子團簇;在使用拉曼光譜分析碳基材料振動模式後,發現C60裂解為無定型碳的程度,因Co原子的參與下變得更高,說明了Co與C原子之間的交互作用,不僅增強了C60的裂解行為,同時限制了無定型碳的脫附行為;在磁滯曲線量測中,經過500 ℃ 退火後薄膜鐵磁行為明顯增強,包含了矯頑場 ( Coercivity, Hc ) 增大了至少5倍以上,以及薄膜由無磁性/順磁性轉變為鐵磁性;在光致螢光光譜量測中,可觀察到C60 與無定型碳之PL峰值強度皆受到Co原子的含量影響;在電壓-電流特性的量測中,注意到C60/Co 雙層膜無論退火前後皆屬於導體;在磁阻量測中,注意到退火後C60/Co 雙層膜磁阻率增大了將近50 %;在霍爾效應量測中,C60/Co 雙層膜經過500 ℃ 退火後,薄膜主要載子由電洞變為電子,並量測到載子濃度為2.32 × 1021 cm-3,載子遷移率為10.9 cm2V-1s-1。第二部分則是製作不同比例的Co-C60 複合材料,並注意到Co原子比例越低,薄膜內材料就以蕭特基接觸為主,以及C60分子的發光特性受到Co原子的熱蒸鍍過程破壞,最後則是C60在共鍍過程中受到Co-C60電子交互作用影響,導致C原子間的鍵能改變,進而改變C60的分子振動模式。上述實驗結果說明了Co與C60的交互作用增強了C60的裂解行為,且C60裂解後所形成的無定型碳,與Co原子混合後誘發了更明顯的磁性行為,同時在光學量測發現退火後的C60/Co仍保有半導體性質,暗示了只要適當調整Co原子與C60含量,就可利用真空退火製作出以Co-C為主成分的磁性半導體,對改善有機自旋閥中的電導率不匹配,具有相當大的潛力。
  • Item
    無機鹵素鈣鈦礦/磁性金屬薄膜 -雙層異質結構之形貌、磁性及熱穩定性分析
    (2021) 陳廷豪; Chen, Ting-Hao
    在這項研究中我們主要使用物理氣相沉積法(Physical vapor deposition, PVD)製備鐵鈀合金薄膜,並且利用旋轉塗佈法將鈣鈦礦(CsPbBr3)量子點旋塗於表面,接續觀察樣品在旋塗前後(CsPbBr3/FePd v.s FePd)的變化,包括表面形貌、光學及磁性,並且觀察不同退火溫度(100˚C ~ 180˚C)後的轉變。CsPbBr3/FePd在原子力顯微鏡(AFM)量測下,我們發現表面在經退火後粗糙度大致不變,且平均約為±10 nm高低且誤差值為1.5 nm。從掃描式電子顯微鏡(SEM)發現量子點為平均大小約11 nm的正方形,並且退火180˚C後有融合的現象。透過光致螢光(PL)的數據分析我們得知在退火100˚C後,光訊號強度下降了3/4,且發光波長有紅移4 nm的現象。最後經由磁光柯爾量測從室溫到退火160˚C,FePd樣品的矯頑場增加了74 %,而CsPbBr3/FePd樣品的矯頑場僅增加了19.2 %;由此結果方知CsPbBr3是一個可以保護磁性材料的覆蓋層。
  • Item
    鈷鐵硼銅薄膜的磁光柯爾效應及鐵磁共振研究鈷鐵硼銅薄膜的磁光柯爾效應及鐵磁共振研究
    (2012) 陳均達; Jyun-Da Chen
    在二氧化矽(SiO2)的基板上,以磁控式共濺鍍(Co-Sputtering)成長20nm及30nm (Co40Fe40B20)1-xCux薄膜,其x分別是0、15、25、35及50。柯爾磁光效應(Magnetic Optical Kerr Effect, MOKE)對樣品做不同角度的量測可得知磁異向性;當參雜Cu比例增時CoFeBCu薄膜的表面磁異向性從二重對稱(2-fold symmetry) 過渡到各向同性。以原子力顯微鏡(Atomic Force Microscopy, AFM)量測樣品表貌,發現隨著參雜金屬Cu增加時,樣品從柱狀排列變均勻分布的顆粒排列,印証了磁異向性的變化。樣品的矯頑力(coercivity)也隨著金屬Cu成分增加而變小;從0.052(Oe)下降至約為0(Oe)。從鐵磁共振(Ferromagnetic Resonance, FMR)分析結果顯示樣品的磁異向性係數Ku(anisotropy constant),隨著參雜金屬Cu成分增加從7.33 (J/m3)下滑至3.33(J/m3),吉爾伯特阻尼係數α(Gilbert damping constant)則隨著Cu成分增加從0.05上升至0.18。
  • Item
    磁性薄膜之表面形貌與磁性行為
    (2012) 何宗穎
      本論文主要探討磁性膜薄的表面形貌與磁性行為之間的關係。實驗架構總共可分成三部分:(1)高定向熱解石墨基板系統(2)三氧化二鋁(藍寶石基板)系統(3)矽(111)基板系統。   高定向熱解石墨基板系統中,利用氬離子轟擊基板,造成基板表面形成缺陷,藉由掃描穿隧式電子顯微鏡觀察鈷原子在平坦的高定性熱解石墨基板上的表面形貌,鈷原子成核的尺寸較表面缺陷的高定性熱解石墨基板上來的大,換句話說,鈷原子成核分佈在表面缺陷的基板上的密度較高。由歐傑電子能譜儀的分析結果可以間接顯示出基板的表面缺陷會使鈷原子成核分佈的更均勻。在磁性方面,利用平行與垂直方向的磁光科爾效應來觀察兩種不同基板的磁性行為。在平坦的基板,鈷薄膜的易軸為平行磁化方向;特別的是,在表面缺陷的基板,鈷薄膜在水平與垂直方向皆可量測到柯爾訊號。經過測試發現易軸為斜向的磁化方向,在厚度達到60ML時仍可以測得。   三氧化二鋁(0001)系統中,利用斜角鍍磁性薄膜(鐵)的方式,造成單軸的磁異向能產生,藉由掃描穿隧式電子顯微鏡觀察在鍍膜角度為0°時,表層鈀原子成核形狀具有三重對稱性;在鍍膜角度為45°與65°時,鈀表面由數奈米大小的顆粒組成。在磁性方面,鍍膜角度為0°時,各個方向角(∅)所量測到的磁滯曲線都是呈現方形的形狀;在鍍膜角度為45°與65°時,產生單軸的磁異向性,易軸方向:沿著方位角∅=0°;難軸方向:沿著方位角∅=90°。   矽(111)基板系統中,我們再一次做了斜角鍍磁性薄膜的實驗,結果與在藍寶石基板中的結果相符。透過改變不同的合金介面層材料(鐵、鎳、鈀),可以觀察到不同的磁性行為,鐵薄膜在鐵-矽合金介面上的矯頑磁力(Hc=130 Oe)大於在鈀-矽合金介面(Hc=50 Oe)與鐵/矽(111)(Hc=50 Oe)。
  • Item
    高定向性熱解石墨表面缺陷誘發鈷及鐵薄膜斜向磁化行為
    (2011) 黃雅筠; Ya-Yun Huang
    本論文利用氬離子濺射高定向性熱解石墨基板,探討基板表面缺陷對鈷薄膜的成長與磁性的影響。利用掃描式穿隧顯微鏡觀察鈷原子在較平坦基板上小區域的表面形貌,鈷原子有向台階邊緣聚集、生成薄膜的傾向,而鈷薄膜的厚度隨著距臺階邊緣的距離減少而增加。歐傑電子能譜儀定量分析的結果,間接顯示出基板的缺陷會使鈷原子在平台上更均勻的成核、形成較均勻分佈的鈷顆粒薄膜。在磁性方面,我們利用垂直以及平行方向的磁光科爾效應來觀察缺陷對其的影響。在較平整的基板表面,鈷薄膜的易軸為平行磁化方向;然而,基板缺陷上生成的鈷薄膜在垂直及平行方向皆可測得柯爾訊號。經測試發現這個易軸為斜向的磁化方向,在厚度達到60 ML時仍可測得。代表基板表面的缺陷不只影響介面附近的成核行為,更影響之後薄膜成長的行為。為了更進一步探討,我們將鍍源換成鐵,觀察基板表面缺陷對鐵薄膜的磁性影響。在較平整的基板表面,鐵薄膜的易軸為平行磁化方向;基板缺陷上生成的鐵薄膜易軸方向呈現斜向磁化行為,其矯頑場有隨著鐵薄膜厚度增加而增加的趨勢。但鐵薄膜厚度為26 ML時,磁化方向會倒下、躺在平行磁化方向。基板表面缺陷除了誘發斜向磁化行為的發生之外,也影響了測得磁滯曲線的初始厚度。其生成的鈷及鐵薄膜所測得具磁性的初始厚度皆較平整的基板表面的薄。
  • Item
    鐵與氧化鐵在鎢(111)與鎢(998)上的磁性研究以及鍍率對磁性的影響
    (2012) 李寶生; Bao-Sheng Li
    在之前的研究裡[1],將鐵磁性材料如鐵(Iron ; Fe)或鈷(Cobalt ; Co)蒸鍍到單晶的鎢上,利用磁光柯爾效應(MOKE),發現某些樣品在縱向(in-plane)以及極化方向(perpendicular)上皆可以量測到300~900高斯的矯頑磁場(Coercivity),並且透過對樣品通以電流時,可以觀察到磁滯曲線(Hysteresis loop)產生很大的偏移(Bias)現象,最大可達150 高斯 / 1安培的偏移量[1],這種特異的磁性,激發我們很大的興趣。不過由於某些尚未掌握到的關鍵變因,使實驗結果的再現性大有問題。而本研究的動機是找到該關鍵變因,以利後續進一步研究。因歐傑能譜顯示具有特異磁性的薄膜樣品含氧及碳等元素,我們懷疑是雜質導致特異磁性,而進一步猜測也許是氧化鐵在”作怪”。故利用氧化鐵(Fe2O3)當作鍍源來模擬被氧化污染的純鐵,以及與純鐵鍍源交互鍍膜進行實驗,先使用殘氣分析儀(Residual Gas Analyzer)檢查鍍源,並利用歐傑電子能譜儀(Auger Electron Spectroscopic)與低能量電子繞射儀(Low Energy Electron Diffraction)來觀察薄膜的成分以及其表面形貌,再使用程式控溫熱脫附質譜儀(Temperature Programmed Thermal Desorption Spectroscopy)來確定薄膜厚度。對照之前的研究,發現鍍率(Deposition rate)也影響著薄膜的磁性性質,所以本次研究也嘗試著將鍍率當作操作變因來進行實驗。
  • Item
    鐵/面心正方錳/鈷在基板銅(100)上,結合磁交換偏耦合和遠程層間磁耦合的磁性與結構研究
    (2011) 王志雄; Chih-Hsiung Wang
    本實驗內容是將Fe/fct-Mn/Co 三層結構以熱蒸鍍的方法將其鍍在銅單Cu(100)上研究此系統的磁交換偏耦合(exchange bias coupling)和遠程層間磁耦合(long range interlayer coupling)現象。 在結構方面,面心正方的鈷(fct-Co)與面心正方的錳(fct-Mn)是利用Low Energy Electron Diffraction (LEED)和I-V LEED 確定其晶格結構。在測量磁性方面,我們利用Magnetic Optical Kerr Effect (MOKE)測得一系列以不同的鐵與錳的厚度的磁滯曲線。 當fct-Mn 厚度增加至24 個原子層,Fe 和Co 的磁矩會經歷過非同調的旋轉(incoherent rotation),造成two-step 的磁滯曲線產生。遠程層間磁耦合(long range interlayer coupling)的影響是傾向鐵和鈷的同調的旋轉(coherent rotation)。但是,Mn/Co 的磁交換偏耦合(exchange bias coupling)會增加鈷的矯頑磁力,同時也破壞到鈷跟鐵的磁矩的同調旋轉機制。結果我們發現當鐵的磁矩正在翻轉時,鈷一開始也跟隨著鐵翻轉,但是到了鐵完成180。翻轉後,鈷又會再次反轉回原始方向。 最後,我們使用磁異向能理論模型(single domain model)以模擬當磁交換偏耦合(exchange bias coupling) 和遠程層間磁耦合(long range interlayer coupling)兩者互相競爭下,所產生的上述磁翻轉機制。
  • Item
    AES系統架設及Co/W(111)之磁性量測
    (2010) 莊孟勳; Meng-Hsun Chuang
    在本篇論文裡面可以分成兩部分。第一部份是關於師大歐傑電子掃瞄儀的架設(Auger Electron Spectroscopy,AES),主要是介紹自製能量分析儀控制器、電子槍控制器的介紹以及在校調能譜儀的一些經過。我們根據能量分析儀以及點子槍的電位需求,利用整流模組、高壓模組以及電阻、電容自製了AES系統周邊的一些電子元件,也藉由之後的量測顯示這些控制器運作非常良好。在量測的部分,我們藉由樣品做的下緣去切電子束的方式,估計電子束的聚焦直經約為1.8mm。我們找到了在真空中AES系統的最佳量測位置為(x,y,z)=(48mm , 25mm , 178.5mm),而且還發現樣品訊號對於距離歐傑電子掃瞄儀洞口的垂直距離相當的敏感,可以在2mm之內減少75\%的訊號強度。\\ 第二部分是初期的工作,主要是利用磁光柯爾效應(Magnetic Optical Kerr Effect,MOKE)觀察Co/W(111)在不同薄膜厚度以及溫度的狀況下薄膜的磁性。我們嘗試的厚度有2、3、5、9 Physical Monolayer(1PML恰可剛好將晶格表面完全覆蓋,對W(111)而言相當於3個ps ML。ps ML全名為pseudo monolayer,1 ps ML的原子數量相當於形成晶體最表層平面所需的原子數量)、嘗試的溫度有尚未熱退火的100K,經過5分鐘300K熱退火之後的100K、200K、300K。我們發現Co在4 PML在100K熱退火前後以及200K、300K都可同時看到垂直以及水平的磁滯曲線。不過當厚度為3 PML以下時,在100K的時候還看的到垂直和水平磁滯曲線共存,不過當溫度大於200K的時候就只能看的到水平的磁滯曲線。