無機鹵素鈣鈦礦/磁性金屬薄膜 -雙層異質結構之形貌、磁性及熱穩定性分析

No Thumbnail Available

Date

2021

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

在這項研究中我們主要使用物理氣相沉積法(Physical vapor deposition, PVD)製備鐵鈀合金薄膜,並且利用旋轉塗佈法將鈣鈦礦(CsPbBr3)量子點旋塗於表面,接續觀察樣品在旋塗前後(CsPbBr3/FePd v.s FePd)的變化,包括表面形貌、光學及磁性,並且觀察不同退火溫度(100˚C ~ 180˚C)後的轉變。CsPbBr3/FePd在原子力顯微鏡(AFM)量測下,我們發現表面在經退火後粗糙度大致不變,且平均約為±10 nm高低且誤差值為1.5 nm。從掃描式電子顯微鏡(SEM)發現量子點為平均大小約11 nm的正方形,並且退火180˚C後有融合的現象。透過光致螢光(PL)的數據分析我們得知在退火100˚C後,光訊號強度下降了3/4,且發光波長有紅移4 nm的現象。最後經由磁光柯爾量測從室溫到退火160˚C,FePd樣品的矯頑場增加了74 %,而CsPbBr3/FePd樣品的矯頑場僅增加了19.2 %;由此結果方知CsPbBr3是一個可以保護磁性材料的覆蓋層。
In this study, we used the physical vapor deposition to prepare FePd alloy, and spin-coating to spread perovskite (CsPbBr3) quantum dots (QDS) on the surface. We characterized the surface of the spin-coated perovskite and bave FePd before and after. Various measurements are carried out, including surface morphology, optical and magnetic properties, after thermal annealing the sample from 100˚C to 180˚C. The AFM study shows that the surface roughness of the CsPbBr3/ FePd remained invaricant and the average value was about ± 10 nm. The SEM study shows that the QDS were of square cubic sample with an average size around 11 nm and aggregated after thermal annealing at 180˚C. PL measurement shows that the intensity of perovskite decreases by 75 % after thermal annealing at 100˚C, and there is a red shift in PL-spectram. The magnetic coercivity of CsPbBr3/ FePd was increased by 19 % without serious inter diffusion effect as compared with the pure FePd was increased by 74 % after thermal annealing (100 to 160 ˚C). The perovskite could serve as a good capping layer, and the interface between perovskite and ferromagnetic layer sustained with good thermal stability.

Description

Keywords

鈣鈦礦, 磁光柯爾, 表面形貌, CsPbBr3, Perovskite, MOKE, AFM, CsPbBr3

Citation

Collections

Endorsement

Review

Supplemented By

Referenced By