物理學系

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/56

本系師資陣容堅強,現有教授15人、副教授12人、助理教授2人、名譽教授5人,每年國科會補助之專題研究計畫超過廿個,補助之經費每年約三千萬,研究成果耀眼,發表於國際著名期刊(SCI)的論文數每年約70篇。

近年來已在課程方面 著手變革,因應學子的各種不同的生涯規劃與需求,加強職業輔導與專業能力的提升,增加高科技相關課程,提供光電學程(光電半導體、半導體製程技術、近代光 學與光電科技等)、凝態物理、表面物理與奈米科技、高能與理論物理、生物物理、應用物理等研究發展專業人才,並配合博士逕讀辦法,讓大學部學生最快能在五 年內取的碩士(透過碩士班先修生),八年內取得博士,有助於提升本系基礎與應用研發能量,為各學術研究機構與業界高科技創新與研發人力(包括在光電業、半 導體製造業、電腦週邊產業等)。

本系亦推動網路教學(科學園)與數位科學研究,作為提供科學教學與學習系統平台的強化支援,並除了原先開設的教育學程外,多增強學生英語教學的能力,與世界科學教師系統連結,在教師從業方面,塑造世界級的物理科學教師,發揮教育影響力。

News

Browse

Search Results

Now showing 1 - 5 of 5
  • Item
    鈷/六方氮化硼-異質結構之表面形貌探討
    (2023) 蔡泓儒; Tsai, Hong-Ru
    由於二維絕緣體材料六方氮化硼 (h-BN) 與塊材結構亦為六方晶體的鈷 (Co) 之晶格結構一致,而且晶格常數的匹配度非常接近,因而此論文專注使用原子力掃描顯微儀 (Atomic Force Microscopy) 研究鈷在六方氮化硼上磊晶成長為薄膜的過程中,其表面形貌如何隨堆疊厚度而演化。本研究使用原子力顯微儀的輕敲模式,分析不同厚度的鈷連續薄膜和鈷微方格在矽基板和六方氮化硼的表面形貌,以及承受不同溫度的高真空熱退火前後的變化。實驗結果顯示,六方氮化硼在濕式轉移於矽基板歷經400度C退火一個小後,可達低於 ±1奈米的表面平整度。鈷薄膜蒸鍍於六方氮化硼,形成平整度約 ±2奈米,經歷400度C退火程序後,會形成較大的奈米島,高低落差為 ±5奈米,橫向尺寸約為數百奈米。此研究顯示,高溫退火對於「鈷/六方氮化硼」的形貌會有非常顯著的影響,這些實驗成果將能夠應用在使用「鈷/氮化硼」異質結構於未來的磁阻元件之中。
  • Item
    有機磁性半導體—富勒烯與鈷的交互作用探討
    (2022) 徐健真; Hsu, Chien-Chen
    在自旋電子學中,磁性半導體是其中一個重要研究領域,其中有機材料與磁性材料的電子交互作用,是如何影響有機-磁性複合材料的磁性與電子傳輸行為,更是一個需要深入探討的領域。本研究使用物理氣相沉積法 ( Physical Vapor Deposition, PVD ),於超高真空系統 ( Ultra-High vacuum system, UHV ) 中,選擇在Al2O3 與Si兩種基板上,成長了C60/Co/C60與C60/Co的三層膜與雙層膜結構。透過探討薄膜磁性、表面形貌、光致螢光光譜( Photoluminescence, PL ) 與拉曼光譜 ( Raman Spectrum ) 、電壓-電流性質、磁阻響應與霍爾效應 ( Hall effect ) 在不同溫度的真空熱退火前後的變化,並以共鍍方式成長了不同比例的Co-C60 複合材料,並與上述退火實驗結果進行比較。本實驗分為兩大主軸,第一部分為C60薄膜與C60/Co 層膜在500 ℃ 下的真空退火,由表面形貌量測中,發現成長於Al2O3基板的C60/Co 雙層膜於退火後,形成了以Co原子為主的奈米島分區結構,以及C60 薄膜經過退火後,形成了近十奈米的原子團簇;在使用拉曼光譜分析碳基材料振動模式後,發現C60裂解為無定型碳的程度,因Co原子的參與下變得更高,說明了Co與C原子之間的交互作用,不僅增強了C60的裂解行為,同時限制了無定型碳的脫附行為;在磁滯曲線量測中,經過500 ℃ 退火後薄膜鐵磁行為明顯增強,包含了矯頑場 ( Coercivity, Hc ) 增大了至少5倍以上,以及薄膜由無磁性/順磁性轉變為鐵磁性;在光致螢光光譜量測中,可觀察到C60 與無定型碳之PL峰值強度皆受到Co原子的含量影響;在電壓-電流特性的量測中,注意到C60/Co 雙層膜無論退火前後皆屬於導體;在磁阻量測中,注意到退火後C60/Co 雙層膜磁阻率增大了將近50 %;在霍爾效應量測中,C60/Co 雙層膜經過500 ℃ 退火後,薄膜主要載子由電洞變為電子,並量測到載子濃度為2.32 × 1021 cm-3,載子遷移率為10.9 cm2V-1s-1。第二部分則是製作不同比例的Co-C60 複合材料,並注意到Co原子比例越低,薄膜內材料就以蕭特基接觸為主,以及C60分子的發光特性受到Co原子的熱蒸鍍過程破壞,最後則是C60在共鍍過程中受到Co-C60電子交互作用影響,導致C原子間的鍵能改變,進而改變C60的分子振動模式。上述實驗結果說明了Co與C60的交互作用增強了C60的裂解行為,且C60裂解後所形成的無定型碳,與Co原子混合後誘發了更明顯的磁性行為,同時在光學量測發現退火後的C60/Co仍保有半導體性質,暗示了只要適當調整Co原子與C60含量,就可利用真空退火製作出以Co-C為主成分的磁性半導體,對改善有機自旋閥中的電導率不匹配,具有相當大的潛力。
  • Item
    無機鹵素鈣鈦礦/磁性金屬薄膜 -雙層異質結構之形貌、磁性及熱穩定性分析
    (2021) 陳廷豪; Chen, Ting-Hao
    在這項研究中我們主要使用物理氣相沉積法(Physical vapor deposition, PVD)製備鐵鈀合金薄膜,並且利用旋轉塗佈法將鈣鈦礦(CsPbBr3)量子點旋塗於表面,接續觀察樣品在旋塗前後(CsPbBr3/FePd v.s FePd)的變化,包括表面形貌、光學及磁性,並且觀察不同退火溫度(100˚C ~ 180˚C)後的轉變。CsPbBr3/FePd在原子力顯微鏡(AFM)量測下,我們發現表面在經退火後粗糙度大致不變,且平均約為±10 nm高低且誤差值為1.5 nm。從掃描式電子顯微鏡(SEM)發現量子點為平均大小約11 nm的正方形,並且退火180˚C後有融合的現象。透過光致螢光(PL)的數據分析我們得知在退火100˚C後,光訊號強度下降了3/4,且發光波長有紅移4 nm的現象。最後經由磁光柯爾量測從室溫到退火160˚C,FePd樣品的矯頑場增加了74 %,而CsPbBr3/FePd樣品的矯頑場僅增加了19.2 %;由此結果方知CsPbBr3是一個可以保護磁性材料的覆蓋層。
  • Item
    利用原子力顯微鏡研究紫外光殺菌之衰亡機制
    (2010) 楊黃捷; Hwang-Jye Yang
    細菌是許多疾病的成因,由於傳統殺菌方法都有一定的限制,故發展新的殺菌方法是我們的目標。脈衝激發拉曼散射能突破傳統殺菌方法的限制,為殺菌作業提供了一個嶄新的方法。本文除了為脈衝激發拉曼散射殺菌法提供前置作業外,最大的目的在於探討紫外光對細菌的影響。我們將利用原子力顯微鏡觀察大腸桿菌經過紫外光照射後菌體外形的變化,並根據統計結果提出合理的衰亡機制。實驗結果顯示,在時間模式的操作下,幾乎所有的大腸桿菌都有中央塌陷的現象,且隨著照射時間越長,塌陷的深度越深,但菌體的長度越短,我們認為是細胞膜受到破壞的緣故;而隨著照射時間的增加,兩端的峰值會越高,我們則懷疑是膜上電荷重新分配所造成的排斥現象。
  • Item
    利用掃瞄探針顯微鏡探測鈷、鎳及鈷鎳複合奈米粒子
    (2009) 許靜淑; Shiu jing-shu
    摘要 本實驗目的在利用原子力顯微鏡(Atomic force Microscopy,AFM)及磁力顯微鏡(Magnetic force Microscopy,MFM)掃瞄Co、Ni及Co+Ni複合體奈米粒子的表面形貌與磁區觀察; Co、Ni及Co+Ni複合體奈米粒子由台北科技大學所研發的改良式真空潛弧法(Arc-Submerged Nanoparticle Synthesis System,ASNSS)製備,並經由乙二醇溶液保存著。筆者採取兩種不同的外加磁場方法,觀察奈米粒子在不同外加磁場方法下的AFM與MFM之表面形貌與磁區變化行為;接著利用原子力顯微鏡與磁力顯微鏡本身內建軟體,分析奈米粒子的Contrast difference of MFM signal。 利用磁力顯微鏡大氣系統在觀測上的優勢是:易於操作(不需抽真空)、解析度高,可看到樣品的表面形貌與最想觀測的磁區變化,搭配分析軟體可做Contrast difference of MFM signal的測量,並繼續利用Origin軟體作圖分析……等等。但是缺點在於真空度不佳,對於樣品表面的乾淨度不易維持,所以欲達到原子層級解析有困難,並且MFM的磁針只有三個月的壽命,必須趁探針尚有磁性的時候趕快測量,否則時間一過,就沒辦法量測出MFM圖形。另外,在掃MFM時容易遇到MFM模式常常掃不到磁區的情況,原因歸於有時候樣品的磁性變化不是那麼明顯,或是探針的磁性已經消磁等等。這是做實驗上遇到的最大困難度。此外,實驗上做Hemholtz線圈邊加磁場邊掃會容易受到磁場history的影響,也是實驗上會遇到的問題。 實驗結果顯示,排除MFM有時候不能掃到理想磁區的限制之外,磁力顯微鏡協助我們觀察Co、Ni及Co+Ni複合體奈米粒子在不同外加磁場方式下所呈現的結果,的確對我們不同的樣品量測MFM的優良與否判斷有其貢獻。結果發現,Co奈米粒子的MFM磁區最容易觀察,反之,Co+Ni奈米粒子最不容易觀察,Ni奈米粒子居於中間。