物理學系
Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/56
本系師資陣容堅強,現有教授15人、副教授12人、助理教授2人、名譽教授5人,每年國科會補助之專題研究計畫超過廿個,補助之經費每年約三千萬,研究成果耀眼,發表於國際著名期刊(SCI)的論文數每年約70篇。
近年來已在課程方面 著手變革,因應學子的各種不同的生涯規劃與需求,加強職業輔導與專業能力的提升,增加高科技相關課程,提供光電學程(光電半導體、半導體製程技術、近代光 學與光電科技等)、凝態物理、表面物理與奈米科技、高能與理論物理、生物物理、應用物理等研究發展專業人才,並配合博士逕讀辦法,讓大學部學生最快能在五 年內取的碩士(透過碩士班先修生),八年內取得博士,有助於提升本系基礎與應用研發能量,為各學術研究機構與業界高科技創新與研發人力(包括在光電業、半 導體製造業、電腦週邊產業等)。
本系亦推動網路教學(科學園)與數位科學研究,作為提供科學教學與學習系統平台的強化支援,並除了原先開設的教育學程外,多增強學生英語教學的能力,與世界科學教師系統連結,在教師從業方面,塑造世界級的物理科學教師,發揮教育影響力。
News
Browse
13 results
Search Results
Item 二硒化錸表面鍍鐵原子致形貌及電性變化(2023) 黃宇濤; Huang, Yu-Tao二硒化錸(ReSe2)為過渡金屬二硫族化物(TMDs)的一員,過往的研究顯示TMDs材料不可避免地會有原子級的缺陷產生,於是近期大家更關注於缺陷工程(Defect Engineering)上,試圖刻意控制缺陷的產生,來達到符合我們所需的材料特性。本實驗室透過超高真空系統的建立,確保欲研究的材料表面不受其他雜質吸附,並使用掃描式穿隧顯微鏡(Scanning tunneling microscope, STM)及掃描穿隧能譜 (Scanning tunneling spectroscopy, STS)進行原子級的表面與缺陷量測。我們利用機械剝離法並搭配使用電子束蒸鍍槍,觀察二硒化錸原始表面特徵、晶格結構、機械剝離後表面缺陷及鐵原子在其表面的缺陷樣式,並量測表面態電子特性,來分析表面缺陷型態和區域大小,對材料的物理特性所造成的影響。其中更發現在表面鍍鐵原子會使電性有類似於非揮發性電阻開關(Non-volatile resistive switching),又稱作憶阻器效應(memristor effect)的現象,顯示了鐵原子在二硒化錸表面有可能因電壓的變換而影響整體排列結構的可能。Item 掃描穿隧顯微術探究鐵誘導三溴化鉻表面形貌及電子特性的影響(2023) 張元儒; Chang, Yuan-Ju三溴化鉻(CrBr3)是著名的磁性材料,雖然磁性特性已被研究許久,但相關的表面形態與電子特性尚未完備,是近期研究的新方向。因鉻原子帶有磁性,即使三溴化鉻限縮成二維尺度仍具有穩定的鐵磁性。但是此材料的居禮溫度遠低於室溫,侷限了材料在電子元件上的發展。若能在不破壞材料磁性的條件下增高居禮溫度將必廣泛應用於各領域,這表示摻雜金屬元素形成的異質結構有望改善此限制。因此本研究利用機械剝離法與乾式轉移法製備CrBr3/HOPG異質結構,並利用掃描穿隧顯微鏡(STM)技術探究鐵誘導的三溴化鉻表面形貌以及利用掃描穿隧能譜(STS)研究電性變化。研究結果顯示三溴化鉻的形貌可區分成三種:片狀、層狀與團狀,包括單層到10層的厚度。而我們發現鍍鐵後的平臺表面出現許多2~3 nm寬的不規則紋路,且原子結構變得相當清晰,掃描穿隧顯微鏡能探測到上層與底層的溴原子以及中間層的鉻原子所形成的六邊形。在電性方面,鍍鐵造成相當大的差異,三溴化鉻的能帶間隙從1.837±0.058 eV降至0.148±0.024 eV,代表鐵原子促使屬於半導體的三溴化鉻轉變成半金屬;同時,鍍鐵前後的費米能階(EF)皆偏向價帶,具有P型半導體的性質。根據實驗結果,我們的研究支持密度泛函理論對於三溴化鉻電子特性的預測,為三溴化鉻在自旋電子學領域的研究開啟新頁。Item 二維材料二硫化鈮表面結構與電性初探(2022) 黃祺翔; Huang, Chi-Hsiang二硫化鈮是屬於金屬性二維材料中的過度金屬二硫族化物,雖然理論學家已經對於二硫化鈮有許多報導,但在奈米級的表面相關影像卻非常少,可能源自於對二硫化鈮表面掃描時要取得清晰的影像並不容易,需要有相當的掃描經驗與對掃描影像的後續處理才能取得較清晰的二硫化鈮奈米級表面。本篇實驗透過掃描穿隧式電子顯微鏡觀察二硫化鈮機械剝離前後與曝氧5到40分鐘的表面缺陷並分析以及使用掃描穿隧能譜功能量測其不同狀態下的電性變化。觀察到隨著曝氧時間增長二硫化鈮表面上的暗點和亮點缺陷有變大的趨勢,至於在費米能階附近的電阻會隨著與氣體接觸而上升,而正負偏壓下會逐漸回到如機械剝離前的狀態。Item 二硒化錸機械剝離前後及氧致缺陷變化(2022) 張文翰; Chang, Wen Han二硒化錸 (ReSe2) 層狀結構的半導體屬於過渡金屬二硫族化物 (TMD) 材料。層狀材料 (二維材料) 發展快速,在半導體產業上有廣泛的應用。而我們使用超高真空環境下,進行STM 與 STS 測量,來了解ReSe2表面物理特性。利用機械剝離方法 (Fresh) 觀測ReSe2前、後、曝氧表面,發現表面上有相關的變化。形貌上我們可以得知主要由亮暗點所構成,以往ReS2、MoS2 、MoSe2同屬二維材料的樣品中亦可觀察到亮暗點的變化,而ReSe2中更可以發現曝氧時顯著的差異於表面上呈現,我們可透過比對其他二維材料樣品後發現,ReSe2樣品於表面上吸附氧的能力有所不同。此次實驗在室溫下STM表面掃圖也較為清晰,更於小尺度時有清晰的原子結構表現。我們接著使用掃描穿隧能譜 (STS) 進行電性上的分析,較為明顯的比較於曝氧後與曝大氣後有相關,這也是我們曝氧的目的,進而佐證大氣中影響的主要角色為何?實驗的主體為形貌分析與電性分析,主要以分段放氧來分析ReSe2樣品,比較後可發現氧氣在ReSe2表面上有更強的吸附力,也是能隙調控的重要條件之一。Item 原子島在金屬/半導體介面的成長研究 (以鈷/銀/鍺(111)為例)(2012) 黃筱嵐; Xiao-Lan HuangThe thermal reaction of Co on Ag/Ge(111)-(√3×√3)/(4×4) phases was studied by scanning tunneling microscopy, low energy electron diffraction, and Auger electron spectroscopy. Firstly, we address on the controversies over the chemical composition of Co islands by examining the thermal reaction of Co on "Ag/Ge(111)-" √3×√3 phase, as well as the coexisting Ag/Ge(111)-4×4 phase. From the study, one finds that Ag atoms shift from (4×4) phase to (√3×√3) phase because of the interaction between Co and the surface. The fact suggests that it is on the surface where Ag-less phase (4×4) transforms into Ag-richer phase (√3×√3). Secondly, we proof that (√13×√13) periodicity is composed of Co-Ge alloy, whereas (2×2) periodicity is composed of pure Co. Thirdly, we realize that it is "Ag/Ge(111)-" √3×√3 preventing Co from diffusing into substrate when annealing the surface at the temperature between 320 K and 730 K. It is known that Co"-" 2×2 islands grown on Ag/Ge(111)-√3×√3 surface are in hcp structure with a (11-20) orientation. The island evolution involves the shape transformation of a unit cell from parallelogram into rectangular. Meanwhile, the shape of the island shifts from hexagonal to stripe. In additions, it is identified that Co-2×2 islands grow along two crystallographic directions: pseudo-[0001] and pseudo-[1-100]. We observe a lateral shift between the topmost and the underlying bilayers for islands which grow along pseudo-[0001] direction. On the other hands, no lateral shift is perceived for those growing along pseudo-[1-100] direction. In terms of the strain–relaxation of Co-2×2 islands grown on Ag/Ge(111)-√3×√3 surface, we analyze the images taken by scanning tunneling microscopy. From the studies, one realizes a common fact that Co"-" 2×2 islands adopt a more compact arrangement than Ge(111) substrate does, whereas each Co-2×2 island is different in the degree of atomic compactness. Yet, we do not observe any distinct relationship between strain–relaxation and the island height. In addition, we identify three different groups of islands from analyzing the correspondence between the strain–relaxation and the island size: (i) small islands (less than 80 nm2) with fixed inter-row distances in high atomic compactness, (ii) small islands with unfixed inter-row distances, and (iii) big islands (bigger than 80 nm2) with fixed inter-row distances in less compact atomic arrangement, as compared to the first two groups. Based on the obtained information, we propose the model that explains the relationship between the strain–relaxation and the island size. Regarding electronic structure, we study "Ag/Ge(111)-" 4×4 phase, "Ag/Ge(111)-" √3×√3 phase, Co"-" 2×2 island, and "CoxGey-" √13×√13 island by means of scanning tunneling spectroscopy at room temperature. Similar to the one acquired from "Ge(111)-c" 2×8, the spectrum obtained from Ag/Ge(111)-4×4 structure reveals a shoulder at 0.7 V, which indicates that Ge adatoms were donated to the electronic states of the Ag-driven phase. However, the electronic spectrum taken from the "CoxGey-" √13×√13 island shows a large number of peaks, which indicates the complex bonding between "CoxGey-" √13×√13 island and the substrate. In addition, the spectra obtained from the Co-2×2 island grown on the step demonstrate a number of peaks at negative sample bias, which is different comparing to those taken from the Co-2×2 island located on the terrace. The phenomenon explains the various Co-substrate interactions, which are accompanied with the growth of Co islands at different areas of the stepped surface.Item 次單層銀夾層對鎳在鍺(111)-c(2×8)表面上隨溫度變化的影響(2013) 蔡孟宏; Tsai, Meng-Hung當表面形成三種複雜重構介面時,鍍上少量的鎳原子,以掃描穿隧顯微鏡觀察原子團在不同溫度下的成長變化。隨著溫度上升,表面上隨意分佈的鎳原子團逐漸聚集形成大島。這些大島具有特殊結構:7×7島、六角形和長條狀,其中只有7×7島是具有週期性結構的島。經過統計,分析鎳原子團喜愛站在銀/鍺(111)-(√3×√3)的基底上。 在實驗過程中,在低溫時銀不會讓鎳與基底鍺發生反應,充分發揮阻擋的效果, 但提高樣品溫度後出現與鎳鍺系統相同原子島,顯示銀無法完全阻止鎳與鍺形成合金。另外,能夠使在純基底上的鎳原子無法與鍺發生反應,顯示銀具有一種長距離作用力。 比較鈷銀鍺系統和鎳。這兩種皆會發生面積小的島消失,大面積的島逐漸增加,此現象稱Ostwald ripening。在鈷銀鍺的系統裡,比較介面對於鈷的束縛,(4 ×4)介面比(√3×√3)介面強,而且成核的鈷島會推開(4×4)基底上的銀原子,在其他區域形成更大片的(√3×√3)重構;在鎳銀鍺系統裡,原子團的體積會隨著溫度上升而增大,顯示鎳在各種基底上皆會與鍺形成合金,且鎳島會喜愛站在(√3×√3)重構。Item 磁性薄膜之表面形貌與磁性行為(2012) 何宗穎本論文主要探討磁性膜薄的表面形貌與磁性行為之間的關係。實驗架構總共可分成三部分:(1)高定向熱解石墨基板系統(2)三氧化二鋁(藍寶石基板)系統(3)矽(111)基板系統。 高定向熱解石墨基板系統中,利用氬離子轟擊基板,造成基板表面形成缺陷,藉由掃描穿隧式電子顯微鏡觀察鈷原子在平坦的高定性熱解石墨基板上的表面形貌,鈷原子成核的尺寸較表面缺陷的高定性熱解石墨基板上來的大,換句話說,鈷原子成核分佈在表面缺陷的基板上的密度較高。由歐傑電子能譜儀的分析結果可以間接顯示出基板的表面缺陷會使鈷原子成核分佈的更均勻。在磁性方面,利用平行與垂直方向的磁光科爾效應來觀察兩種不同基板的磁性行為。在平坦的基板,鈷薄膜的易軸為平行磁化方向;特別的是,在表面缺陷的基板,鈷薄膜在水平與垂直方向皆可量測到柯爾訊號。經過測試發現易軸為斜向的磁化方向,在厚度達到60ML時仍可以測得。 三氧化二鋁(0001)系統中,利用斜角鍍磁性薄膜(鐵)的方式,造成單軸的磁異向能產生,藉由掃描穿隧式電子顯微鏡觀察在鍍膜角度為0°時,表層鈀原子成核形狀具有三重對稱性;在鍍膜角度為45°與65°時,鈀表面由數奈米大小的顆粒組成。在磁性方面,鍍膜角度為0°時,各個方向角(∅)所量測到的磁滯曲線都是呈現方形的形狀;在鍍膜角度為45°與65°時,產生單軸的磁異向性,易軸方向:沿著方位角∅=0°;難軸方向:沿著方位角∅=90°。 矽(111)基板系統中,我們再一次做了斜角鍍磁性薄膜的實驗,結果與在藍寶石基板中的結果相符。透過改變不同的合金介面層材料(鐵、鎳、鈀),可以觀察到不同的磁性行為,鐵薄膜在鐵-矽合金介面上的矯頑磁力(Hc=130 Oe)大於在鈀-矽合金介面(Hc=50 Oe)與鐵/矽(111)(Hc=50 Oe)。Item 不同鈷原子層在銀/鍺表面之研究(2008) 陳俊榮在超高真空的環境下(<10-10 Torr),藉由掃描穿隧顯微鏡(STM)觀察鈷原子島成長的行為。為了阻隔鈷與鍺形成合金,先在鍺的表面鍍上一原子單層的銀,並加熱使其形成(√3×√3)的穩定重構,利用分子束蒸鍍鎗在其表面成長鈷的磁性薄膜。蒸鍍上1.4 ML、2.1ML、2.8 ML、3.5 ML、4.2 ML及4.9 ML的鈷並經加熱退火至400 ℃,即成功地發現鈷原子在表面上形成週期性之二維原子島。當鈷原子鍍量不同時,鈷島的成長模式將有不一樣的行為;且隨著鍍量增加,鈷原子島的成長會由二維成長轉變成三維成長。我們也發現,三十五層以上的鈷原子島重構依舊會維持2x2的結構,顯示出鍺基底對於鈷原子島的作用力很大,也代表T4 site 成長為2x2結構比1x1更利。而比較加熱退火至不同的溫度的情況,在低鍍量時鈷原子島面積的成長與溫度成正比關係;若鈷鍍量超過3.5 ML時,鈷原子面積成長將趨於平緩。對週期為2x2的鈷原子島,其成長是一層伴隨著一層地,發現層與層之間的成長有三種方向。Item 矽在銀/矽(111)-(√3x√3)與銀/鍺(111)-(√3x√3)表面上的成長(2014) 謝伯宜; Hsieh, Po-I本實驗將矽原子蒸鍍於不同表面溫度之銀/矽(111)-(√3x√3)與銀/鍺(111)-(√3x√3)表面,並以掃描穿隧式顯微鏡(STM)觀察矽原子於兩表面的成長。在矽/銀/矽系統中,√3x√3島緣之下層發生了矽-銀交換的現象,矽原子將以Step-growth的形式自√3x√3島緣併入基底,使得上層√3x√3島面積比例上升。在矽/銀/鍺系統中,在表面上可觀察到兩種規則性結構,分別為 √3x√3島以及有序結構。√3x√3島為矽原子與下方銀原子層交換所形成之週期性島,有序結構為矽原子於表面上排列組成之單層矽結構。該有序結構依原子排列方式,可進一步區分為2x2六角結構以及矩形結構。Item 鐵在鍺(111)-c(2×8)及銀/鍺(111)-(√3×√3) 表面上隨溫度衍化的行為(2012) 周明寬在室溫下蒸鍍少量鐵原子於鍺(111)-c(2×8)上,並進行一連串加熱退火的實驗,以穿隧掃描顯微鏡對其形貌進行觀測。從STM的影像圖和對表面上原子島的體積分析,顯示隨著加熱退火溫度的提升,鐵會在鍺基底上造成缺陷與破洞,藉以拉出鍺進行合金使體積增加,並形成數種不同形貌的島嶼。最終當加熱退火溫度達到840K以上後,表面上的原子團會聚集成數種巨大的原子島。 再來將銀蒸鍍至鍺(111)-c(2×8)表面上,將其加熱退火使樣品表面重構為銀/鍺(111)-(√3×√3)後,蒸鍍少量鐵再度進行加熱退火的實驗。與鐵鍺系統的實驗結果比較後發現,銀能夠保護基底上不會出現缺陷,但仍無法阻止鐵在加熱退火溫度升高後從基底拉出鍺進行合金。於鐵銀鍺系統中發現的原子島種類和鐵鍺系統中大致相同,但鐵銀鍺系統中出現新種類的島和一些跡象顯示銀對於鐵鍺合金的成長仍有影響力。