物理學系

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/56

本系師資陣容堅強,現有教授15人、副教授12人、助理教授2人、名譽教授5人,每年國科會補助之專題研究計畫超過廿個,補助之經費每年約三千萬,研究成果耀眼,發表於國際著名期刊(SCI)的論文數每年約70篇。

近年來已在課程方面 著手變革,因應學子的各種不同的生涯規劃與需求,加強職業輔導與專業能力的提升,增加高科技相關課程,提供光電學程(光電半導體、半導體製程技術、近代光 學與光電科技等)、凝態物理、表面物理與奈米科技、高能與理論物理、生物物理、應用物理等研究發展專業人才,並配合博士逕讀辦法,讓大學部學生最快能在五 年內取的碩士(透過碩士班先修生),八年內取得博士,有助於提升本系基礎與應用研發能量,為各學術研究機構與業界高科技創新與研發人力(包括在光電業、半 導體製造業、電腦週邊產業等)。

本系亦推動網路教學(科學園)與數位科學研究,作為提供科學教學與學習系統平台的強化支援,並除了原先開設的教育學程外,多增強學生英語教學的能力,與世界科學教師系統連結,在教師從業方面,塑造世界級的物理科學教師,發揮教育影響力。

News

Browse

Search Results

Now showing 1 - 7 of 7
  • Item
    雷射照射下石墨烯/二硫化鉬與六方氮化硼/二硫化鉬雙層異質結構之穩定性
    (2023) 許聖郁; Hsu, Sheng-Yu
    本研究使用拉曼光譜及螢光光譜,研究了二硫化鉬和石墨烯/二硫化鉬和六方氮化硼/二硫化鉬等結構在不同雷射功率下的穩定性。結果顯示,在石墨烯/二硫化鉬和六方氮化硼/二硫化鉬等異質結構中,薄膜能夠隔絕大氣並增強二硫化鉬受雷射影響的穩定性。原子力顯微鏡表面形貌和拉曼光譜顯示,經過56 mW、30 mW雷射照射裸露的二硫化鉬後,二硫化鉬會凸起並發生結構變化,並且拉曼訊號在30分鐘後衰減至原本的10 %。結構變化的過程中,A1g和E2g兩個特徵峰會發生紅移,A1g的紅移是由氧化產生的p-dope所引起,而E2g則是由結構變化產生的應變所導致。對於石墨烯/二硫化鉬系統,我們觀察到不同的光譜特徵。在雷射照射過程中,拉曼特徵峰和光致螢光強度並沒有快速下降,這顯示結構變化現象被抑制。而對於六方氮化硼/二硫化鉬30 mW的實驗組中,觀察到拉曼特徵峰和光致螢光強度呈現先上升的趨勢,因此推測在略低於30 mW雷射的環境下,六方氮化硼/二硫化鉬能夠保持穩定。結果顯示石墨烯/二硫化鉬受雷射照射影響的穩定性最佳,六方氮化硼/二硫化鉬次之,未經覆蓋而裸露的二硫化鉬穩定性最差。
  • Item
    二硫化鉬相關異質結構分析
    (2021) 許銓喆; Hsu, Chuan-Che
    我們分析二硫化鉬異質結構的物理特性,我們將鐵磁性材料(鐵、鈷鈀合金)和功能性材料(金、C60)鍍在二硫化鉬的薄片上。所有實驗中的二硫化鉬都使用化學氣相沉積(CVD)來製備於二氧化矽/矽(1 0 0)上。在鍍上異質結構之前,我們都會利用原子力顯微鏡(AFM)、光致發光光譜(PL)和拉曼光譜(Raman)來檢查二硫化鉬的基本性質。形貌上,發現一些有趣的現象:高溫下(約500 k)在二硫化鉬上鈷鈀合金的實驗中觀察到有奈米顆粒會聚集在單層二硫化鉬的邊緣,然而在多層二硫化鉬中這些奈米顆粒則在每層邊緣平行排列,且我們也觀察到光致發光的quenched (淬滅)現象,這證明高溫下鈷鈀合金也有覆蓋在二硫化鉬的平台表面上且非常的平坦,粗糙度約小於±0.5 nm,相較之下,常溫下成長在二硫化鉬的鈷鈀合金薄膜卻很粗糙(粗糙度~±2 nm)。再來是關於二硫化鉬上金(2~8 nm),我們觀察到高度反轉的現象。鍍金前,二硫化鉬到基板二氧化矽的台階高度為 +0.66 nm,這大約是正常的二硫化鉬的單層厚度。鍍金後,二硫化鉬到基板之間的高度反轉成(約-1.0至-3.5 nm)。此高度反轉現象的原因是金在二硫化鉬和基板上的不同生長模式,且這機制會取決於金的鍍膜時的溫度和金的厚度。關於磁性方面,令人驚訝的是我們觀察到鐵磁性材料(鐵、鈷鈀合金)/二硫化鉬與旁邊的基板二氧化矽之間有magnetic decoupling(磁去耦合)的現象。儘管二硫化鉬厚度(~0.66 nm)比鐵或鈷鈀合金的厚度更薄,關於3.6 nm的鐵在二硫化鉬上的矯頑場 (Hc) 為 28 ±5 Oe,然旁邊區域基板二氧化矽上的3.6 nm Fe的Hc約為 58 ±5 Oe,可看出矯頑場有明顯的差異(約30 Oe),之所以會有magnetic decoupling是由於鐵在不同基材上具有明顯的界面的磁各異向性。且也觀察到鈷鈀合金在二硫化鉬上也有類似的現象,在二硫化鉬上的鈷鈀合金(8 nm)的Hc為 52 ±3 Oe,旁邊的基板二氧化矽上的鈷鈀合金Hc 為 64 ±3 Oe,可得知鈷鈀合金上也會觀察到magnetic decoupling的現象。 最後,關於有機材料在二硫化鉬上的研究,隨著C60覆蓋度的增加,PL峰值從原本是二硫化鉬主導的1.83 eV變為C60主導的1.69 eV,此外在 C60/二硫化鉬這異質結構上證明了連續雷射會導致C60脫附。大約10 mW/µm2 的雷射功率就足以讓二硫化鉬薄片中的 20 nm C60脫附,所以可用這方法設計約為 500 nm微觀圖案。除了形態結構之外,還通過連續雷射誘導C60脫附的方法,來觀察在C60/二硫化鉬上微觀圖形的PL,關於上述在二維材料二硫化鉬基本研究(形貌,磁性,有機材料雕製微觀圖形),相信這對未來的二維材料的二硫化鉬自旋電子應用或元件設非常有幫助。
  • Item
    鈣鈦礦與磁性金屬、二硫化鉬之介面特性分析
    (2022) 林子恩; Lin, Zih-En
    鈣鈦礦為新興太陽能電池材料,並且近年已有許多研究報導其光電性質[1,2],但少有提及表面形貌。在先前研究中我們發現鈣鈦礦MAPbBr3無法在鐵鈀合金表面形成均勻且連續的薄膜,會呈現奈米柱狀結構並且有裸露的合金金屬層[9]。在本實驗中,我們發現以石墨烯層插層於鈣鈦礦與鐵磁層之間可使鈣鈦礦形成均勻連續薄膜。由原子力顯微鏡 (AFM) 剖面圖可觀察到:在鐵磁層表面粗糙度小於1 nm,在轉移石墨烯後約有 2 nm,在旋塗鈣鈦礦之後約有6 nm。在AFM形貌圖以及剖面圖可以看出鈣鈦礦於石墨烯上形成連續薄膜。此技術應用於元件製成可防止鈣鈦礦與金屬層的層間短路,使元件正常運作。二硫化鉬具有良好的載子遷移率,可作半導體材料,但仍有光吸收率相對不高的缺點[3]。鈣鈦礦/二硫化鉬異質結構具有較高光吸收率。但雖有許多關於鈣鈦礦/二硫化鉬結構光電性質的文章[4,5],但對於鈣鈦礦在二硫化鉬上表面形貌的研究仍然缺乏。將鈣鈦礦旋塗於二硫化鉬上之後,在AFM形貌圖仍可分辨二硫化鉬的形狀,並且可見在二硫化鉬上的鈣鈦礦較基板上的緻密。在SEM圖的分析中,在二硫化鉬上的鈣鈦礦粒徑約在20 nm,在基板上約在30 nm。旋塗鈣鈦礦會造成二硫化鉬光致發光 (PL) 峰值的猝滅,並且造成峰值紅移。依文獻報導猝滅是因為鈣鈦礦到二硫化鉬的電荷轉移,紅移是因為二硫化鉬上量子點的n型摻雜效應[4]。形狀會影響二硫化鉬PL峰值。在旋塗鈣鈦礦後,缺角三角形二硫化鉬的PL峰值較三角形位移多,在3 ~12 nm區間,三角形的位移則在3 nm以內。在旋塗鈣鈦礦之後量測鈣鈦礦PL峰值位置,缺角三角形上的鈣鈦礦PL峰值比起三角形二硫化鉬藍移3 ~ 5 nm。文獻[52]中提及鈣鈦礦顆粒大小會影響PL峰值高低,我們推測可能由於三角形與缺角三角形上鈣鈦礦顆粒大小差異而影響PL峰值,但仍需進一步實驗確認。以450 nm藍光雷射照射鈣鈦礦/二硫化鉬結構,其中二硫化鉬從單層至6層,發現二硫化鉬PL峰值幾乎沒有變化,但峰值強度有減少的現象。
  • Item
    層狀二硫化鉬的偏振解析拉曼光譜研究
    (2021) 姜昱帆; Chiang, Yu-Fan
    偏振拉曼光譜已被廣泛應用於許多二維材料,包括石墨烯和過渡金屬硫化物,特別是使用線偏振光和圓偏振光為激發光。通過計算不同材料受不同偏振入射光影響的拉曼張量,我們可以得知聲子振動模式是如何表現其偏振態。在這項工作中,單層二硫化鉬被轉移到擁有不同厚度之二氧化矽的矽基板上,以測量偏振拉曼光譜。結果顯示,當被線偏振的入射光激發時,單層二硫化鉬的面內振動(E^')和面外振動(A_1^')模式分別表現出各向同性和線偏振的散射光。同時,當使用圓偏振光作為激發光時,E^'和A_1^'模態則分別表現出旋向交換(helicity-exchange)和旋向守恆(helicity-conserve)的行為。 更重要的是,實驗結果發現單層二硫化鉬的E^'和 A_1^'振動模式在位於純矽基板上時出現與理論模型相異的情形。我們引入了一個強度偏移量來解釋二硫化鉬的聲子與基板之間的耦合效應。此外,還引用了一些與電子-聲子耦合如何影響拉曼強度的偏振態有關的論文,去解釋這種奇特的現象,深入探討層狀二維材料的聲子與光子之間的交互作用,以期提供未來先進材料應用更多重要的基礎與應用。
  • Item
    通過掃描穿隧顯微鏡研究二硫化鉬缺陷的形成與其對電子特性的影響
    (2021) 温柏淯; Wen, Po-Yu
    二硫化鉬屬於層狀半導體中的過渡金屬二硫族化物,可透過層數改變其能隙大小,且層跟層之間屬於凡得瓦力作用,我們可以輕易地透過機械剝離來產生新的可研究的表面,一直以來都是電子元件的熱門材料。本次實驗我們在超高真空的環境下,利用掃描穿隧顯微鏡觀察天然二硫化鉬塊材的表面型態以及電性在四種情況下的變化,分別是機械剝離前的原始表面、機械剝離後的新鮮表面、機械剝離後曝氧8小時的表面以及機械剝離後置於大氣下7個月的表面。我們將二硫化鉬進行機械剝離後可以觀察到大量電子空乏的現象,此現象經過曝氧以及置於大氣下後幾乎退去。我們再來探討二硫化鉬的表面電性,曝氧後的二硫化鉬與置於大氣下的表面電性除了導帶的移動具有相似度以外,其表面態的特徵也吻合,藉此可以了解大氣中的氧氣是影響二硫化鉬表面電性的重要因素之一。透過本次實驗,我們了解表面缺陷以及環境的變化可以影響二硫化鉬的表面能帶結構,這將成為我們如何考量天然二硫化鉬作為半導體材料的重要調控條件之一。
  • Item
    利用雷射對富勒烯/二硫化鉬異質結構的效應雕製微觀圖形
    (2020) 馬康耀; Ma, Kang-Yao
    本次實驗的內容主要在探討,成長於二氧化矽(SiO2)基板上的二硫化鉬(MoS2)與C60組合而成的樣品,在綠光雷射下的拉曼效應(Raman effect)以及光致發光(Photoluminescence PL)的結果,以及其表面形貌;並且藉由改變不同雷射功率,觀察C60的脫附現象(desorption)。 樣品的製備為利用化學氣象沉積(CVD)在二氧化矽(SiO2)基板上沉積出二硫化鉬(MoS2)薄膜,再利用超高真空鍍膜技術將C60鍍上;利用原子力顯微鏡(AFM)與拉曼效應、光致發光光譜分析對C60/MoS2樣品的表面結構以及半導體性質進行量測。實驗結果發現,改變不同的雷射功率,以及照射時間,可以對C60的光致發光特徵峰造成影響,進而探討雷射對C60造成的脫附現象;實驗中發現使用波長532 nm功率 5 mW的雷射以1分鐘與6分鐘的照射時間,分別可以使樣品造成 C60的PL峰值以及MoS2的PL峰值的下降,並利用此現象對C60/MoS2異質結構進行微觀圖形的雕製。
  • Item
    利用掃描穿隧顯微鏡探測在二硫化鉬上表面缺陷的電子特性
    (2016) 張子韋; Chang, Tzu-Wei
    在N型半導體,缺陷通常扮演著捕捉電子的角色,因為其表面缺陷的能態大部分落在能隙中,導致導帶電子會掉到缺陷的表面能態裡,也就是電子被捕捉了,所以N型半導體在表面上都是電子空乏的。然而根據文獻指出,在N型半導體中也有些特例如InN,其表面的缺陷能態會提供電子出來,因缺陷的表面態位於導帶之上,導致缺陷的電子就提供到材料表面,所以表面更為導電,造成電子聚集在表面的現象,稱為表面載子累積,此現象進而影響到表面的電導率。由研究指出,在二硫化鉬厚度減少的情況下,電導率上升,雖然在電導值的量測上已經有一些相關的證據,但還是缺乏了一個直接的證據,說明缺陷的能態密度是對表面有影響的。因此,本實驗利用掃描穿隧顯微鏡,直接觀察於表面缺陷的電子特性,並透過機械剝離法,探討缺陷能態密度的變化。本實驗量測結果發現,在靠近導帶的dI/dV曲線特徵峰值,主要由鉬的懸鍵上的未配對電子所貢獻,而另一靠近價帶的dI/dV曲線,較微弱的特徵峰值是由硫缺所貢獻,在機械剝離法後發現,硫缺的能態密度會因為氧氣分子的吸收進而降低能態密度。