數學系

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/55

本系之研究目標為發展卓越研究群,教育目標為培養高深數學及數學教育研究人才與培育中學及大學之優良數學師資。 本系之發展,在大環境的配合下,有堅持,有反思,有開創。當本校因師資培育政策鬆綁,高唱師大轉型之時代脈絡下, 本系之發展方向已定,正邁開大步前進中。

一、提倡研究,以研究促進教學專業發展。

本系同仁的學術研究,最近幾年一直在進步中,整體而言,尚有很大的進步空間。倡導研究是本系未來發展的主軸, 然而提倡研究是否會扭曲本系傳統培育優良師資的功能呢?我們的想法是,不僅不會,研究並且還可以促進研究者的教學成長。

初任教師,不管任教中學或大學,前幾年的教學,最關注的往往是教材,關心設定的教材是否都講授了、學生成績是否理想; 教學經驗豐富之後,逐漸轉向關心教學,怎麼教學生才學得好;然後是關心學生,以學生為中心進行教學活動;最後對教育工作有獻身的承諾, 這是一般的教學專業發展歷程。

大學教師如何促進自我教學的專業成長?我們認為,只有靠學術研究,才能不斷拓展思想與觀念,才能廣化、深化知識,才能自然呈現對 知識文化的熱愛態度,才能掌握求知的方法,日益厚植自己的內涵。研究者這樣的氣質在教學時自然也會感染給學習者,當然就能做好教育的工作。 所以說,好的研究者不僅對教學品質相輔相成,應該也是好的教學者之必要條件。其實,很多數學教師都表白,他們的教學思維與教學行動, 主要是源自自己感受良好的數學學習經驗。研究者的教學對大學生學習數學所產生的潛移默化,應也會反映在這些未來師資的教學及終身學習上。

本系的發展理念是,教學者一定要靠不斷的學術研究,來促進自己教學的專業成長。我們希望培育的學生(大學及研究所)都能具有此認知, 自然系上同仁也要表現有此認知的行為。

二、繼續保持本系規劃完善、績效卓越的數學師資培育課程。

本系之中學數學師資培育課程,規劃相當周延,包括數學學習、數學教學與評量、數學解題、數學教材教法、教學實習,再輔以班級經營、 輔導原理與實務、教育社會學、教育心理學、數學史、數學與電腦等等專業素養科目,整體與一般大學數學系之科目並列,融合學習。 既符合我國社會之中學數學教學需求,又能配合國際數學教育的主流思潮之發展趨勢。近年來,本系畢業生,有意教職者,幾乎百分之百都能通過 各校的遴選而受聘。

三、整合大學數學課程與師資培育課程,相輔相成。

本系之課程規劃,既有廣度、深度兼顧的大學數學系課程,並開授電腦相關的實用課程,又有完善的師資培育課程,最重要的更輔以 數學文化素養的數學史、哲科目。大學部學生孕育教育素養的期間,長達四年,與速成的一兩年的教育學程品質不同;再者,高深數學的基礎初探, 四年期間,與日精進。站在大學教育是通博教育,而非職業教育的基調上,本系學生在四年期間,有充分的時間進行了解自我的秉賦、能力、情緒、 動機與人生目標而調整自己的生涯規劃,或鑽研高深數學,或獻身中學數學教育,或其他工作事業,基本上都具備了良好紮實的大學教育基礎。

本系在過去已培養相當多高深數學研究人才及眾多優秀中學數學教師之基礎上,宜自我肯定整合大學數學系課程與師資培育課程於一爐之 課程規劃方向,日後應提升大學教學品質,而非課程發展方向的轉變。

四、學術發展國際化 。

本系若干個別同仁的努力,已漸受國際學者肯定,陸續有學者到系訪問,駐系三個月或一個月,或一、兩星期者都有。促進國際學術交流的互訪, 不僅是教授,還有研究生,都是本系鼓勵的。

跨國的學術研究計畫,數學教育方面已在進行中。未來更應積極推動,延拓到其他領域的研究合作。

本系已有同仁在其相關領域的國際學術團體,作了相當的學術服務貢獻,例如舉辦國際學會的學術研討會,擔任國際委員等等。拓展這類國際學術服務, 有助本系學術發展國際化。務期在國際學術社群內,成為一個被認同的學術機構

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    無字證明之教學動畫設計─以高中的三角函數公式為例
    (2020) 楊博凱; Yang, Bo-Kai
    學習數學論證能力是中學數學教育重要的一環,然而學生在學習時卻時常忽略證明,或是當下有聽懂,但沒有試圖洞察其背後的推導邏輯,因此若能提升學生對數學證明的興趣,或許會在證明中能有更多的著墨。本研究自尼爾森(R. B. Nelson)所著作的《無字證明I:視覺思考上的練習》(Proofs without Words I: Exercises in Visual Thinking)、《無字證明II:更多視覺思考上的練習》(Proofs Without Words II: More Exercises in Visual Thinking)與《無字證明III:進階視覺思考上的練習》(Proofs Without Words III: Further Exercises in Visual Thinking)三本書中挑選8篇三角函數公式的無字證明,先由無字證明工作單團隊深入探究,再由研究者將其開發成數位動畫,增強起始點的提示與邏輯推理順序,希望能提升學生的學習興趣,並提供給師生們教學上使用。
  • Item
    高中數學三角函數概念試題的研究
    (2009) 高嘉徽
    本研究的主要目的是希望發展適合高中學生評量的三角函數概念試題,藉由好的數學問題,可以幫助教師隨時檢視自身教學內容,修正教學方式。 研究者首先透過探討三角學的發展歷史及其相關文獻與理論、搜集市面上有關三角函數概念試題的原始素材,作為參考依據,開發出研究者認為適合高中學生評量的三角函數概念試題,並透過和小組成員與指導教授的審題及修題,及預試階段後的修題,和廖森游老師所研究之「三角函數的程序試題」與方璞政老師「三角函數的解題能力試題」整合成一份試卷。總計共八份試卷。選取基隆、台北、彰化、雲林、高雄等五縣市共五所高中,受測學生總數為463人,以每節課50分鐘的施測時間實施。研究方法以測驗法對學生作紙筆測驗,依據所得的資料進行統計分析。 研究的主要結果如下: 1. 從施測結果來看,本研究施測之三角函數概念試題共32題,答對率最低15%,最高85%。就試題的難易分配原則來分析,有12題,等級屬於「易」試題;10題,等級屬於「中偏易」試題;3題,等級屬於「中偏難」試題;有7題,等級屬於「難」試題。因此本研究所開發出的概念試題,等級大部份都屬於「易」或「中偏易」試題。 2. 本研究施測之三角函數概念試題,發現大部分的學生對三角函數的認識不清,再次與過去有關三角函數的錯誤類型之研究,互相呼應。 3. 學生對本研究所開發出三角函數概念試題的認同信念,大部份認為所開發出的概念試題,可測出學生是否具有三角函數之基本概念。 4. 根據施測結果,對現行高中數學教師提出三角函數—「正餘弦定理」與「複數的極式」這兩個單元教學內容與教材上的建議。