生命科學專業學院—生命科學系
Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/58
本系學士班之教育目標為「培育優良之生物科教師及生命科學研究人才」雙軌並行。
因應少子化的衝擊,本系調整相關員額及教學資源之分配,在課程設計及學習活動上,特別注重學生基礎學識、研究能力和研究方法的訓練,使學生可依個人志趣作學習規劃,畢業後有更寬廣的出路。
本系碩、博士班之教育目標則以「培養生命科學研究人才」為主,並兼顧師資培育,故課程設計及學習活動以培養獨立研究能力為主要目標。
News
Browse
6 results
Search Results
Item 銀離子於酸性環境中對斑馬魚胚胎發育及離子調控之危害(2021) 孔耕心; Kung, Geng-Xin奈米銀在近年來被廣泛地運用於醫療及化妝品產業,其廢棄材料表面釋放出的銀離子會危害水生生物。然而,目前對於銀離子在不同酸鹼值環境中的毒性差異並不瞭解。本研究利用斑馬魚胚胎為水生生物模式,將其暴露於含有0、0.1及0.25 ppm AgNO3之pH 5或pH 7環境中,以評估銀離子毒性的差異。在暴露96小時的結果中可以得知銀離子的胚胎發育影響程度隨著濃度升高而增加。在銀離子的暴露後胚胎體長顯著下降,而卵黃囊面積則會增加。銀離子亦導致胚胎耳石囊面積及耳石面積下降,影響胚胎的內耳系統。另外,側線神經丘及毛細胞數目下降也反映出銀離子對胚胎側線的影響。值得注意的是:酸環境(pH 5)中會增加銀離子在體長、卵黃囊、耳石囊以及耳石上的影響。另一方面,銀離子降低離子細胞開口面積及數目,阻礙胚胎的離子調節功能,並且導致NaRC及HRC數目顯著降低,增加胚胎適應酸環境的困難性。另外,30分鐘及2小時的實驗中可發現:銀離子會藉由增加離子細胞的氧化壓力程度,進而誘發細胞凋亡機制。總結以上結果,本研究認為酸環境會增加銀離子對魚類的危害。Item Rh蛋白在斑馬魚胚胎皮膚的功能(2013) 施廷翰; Tin-Han ShihRh蛋白是在脊椎動物中發現的氣體通道蛋白,被認為具有運輸氨以及二氧化碳的能力。在魚類中,鰓(成魚)以及皮膚(胚胎仔魚)都是主要用來呼吸的器官,但是目前仍不確定是由何種特定細胞來執行排氨以及二氧化碳的功能,也尚未清楚Rh蛋白在其中扮演的角色。在我的研究中,我將利用斑馬魚胚胎,證明Rh蛋白參與皮膚氨以及二氧化碳運輸的功能。 在第一章的研究中,我以螢光免疫染色證明Rhcg1表現在富含氫幫浦細胞(HR cell)的頂端細胞膜上。利用SIET分析仔魚體表細胞的排氨功能後發現,HR cell比它型表皮細胞具有更強的排氨能力,而此排氨能力也隨抑制Rhcg1的表現而顯著降低。我也發現HR cell在高氨下仍可維持排氨作用,但若是抑制氫幫浦(H+-ATPase)或Rhcg1的表現則會使得HR cell失去高氨下的排氨能力,顯示H+-ATPase以及Rhcg1是HR cell執行主動排氨的關鍵分子。 我在第二章要探討排氨以及鈉離子吸收的運輸機制。透過高氨環境抑制排氨將使得鈉離子吸收能力降低。而增加鈉離子的吸收後則使排氨量增加,顯示氨與鈉離子的運輸息息相關。抑制了Rhcg1以及鈉氫交換蛋白(Na+/H+ exchanger, NHE3b)的表現後發現排氨與吸鈉量皆降低。抑制這兩蛋白也影響了體內鈉離子的含量,顯示Rhcg1以及NHE3b是魚類進行排氨依賴性的鈉離子吸收機制的重要蛋白。 於第三章我將分析另一Rh蛋白Rhbg在仔魚皮膚上的分布與功能。利用原位雜交以及免疫螢光染色我證明Rhbg表現在皮膚keratinocyte頂端與底側端的細胞膜上。與抑制Rhcg1相比,抑制了Rhbg的表現會造成更嚴重的排氨能力失調,顯示Rhbg對於排氨的影響更大。然而,Rhbg的抑制將造成Rhcg1的表現增加以及HR cell排氨能力的提升,這些現象說明補償性的排氨機制是藉由HR cell來調節。 在最後的章節中,我分析了仔魚皮膚Rh蛋白與二氧化碳運輸的相關性。研究發現利用高氨環境會抑制二氧化碳的排放,而高碳酸水也會降低氨的排放量,顯示二氧化碳與氨可能透過同一路徑排放。抑制了Rhbg蛋白會顯著降低二氧化碳排放量,但抑制Rhcg1則不會造成此現象。本實驗也利用H+探針測量表皮二氧化碳的水合(產生H+)與碳酸的水解(減少H+),藉以分析細胞膜對於二氧化碳的通透性。在高碳酸水的浸泡實驗中,抑制Rhbg將減少體表鹼化的程度,說明較少的二氧化碳通過表皮。這些數據證實Rhbg是魚類排放二氧化碳的重要路徑。Item 應用斑馬魚作為研究端腦突觸可塑性及智能障礙疾病的模式(2012) 吳民聰; Ming-Chong Ng硬骨魚類的端腦在學習與記憶的形成過程中扮演著重要的角色,其中又以端腦背側的外側區(Dl)與中側區(Dm)最為關鍵。利用螢光追蹤方法可發現,將螢光染劑置入D1區後,螢光物質會由Dl往Dm傳遞,這現象意味著兩者之間的神經纖維有緊密相連的關係,但目前探討Dl-Dm間突觸傳遞現象的研究還非常稀少。斑馬魚是一種廣泛應用於探討藥物成癮、焦慮以及學習和記憶等研究的模式動物。本論文的研究目的之一即以電生理技術,探討在斑馬魚端腦中Dl-Dm投射路徑的神經傳遞與突觸可塑(synaptic plasticity)現象。從結果可觀察到,在Dl給予一次電刺激能引發Dm產生一個負電位之電場電位(field potential, FP),且該FP能被AMPA/kainate受器拮抗劑CNQX、0.5 mM Ca 2+、8.0 mM Mg 2+ 及TTX (0.5 μM)所阻斷;相反的,在無Mg 2+的人工腦脊髓液以及bicuculline中FP則能被提升並引發神經的猝發(bursting)現象。以上結果意味著興奮性與抑制性的神經傳遞作用皆可能具調節神經突觸的功能。為了探究這假說,本論文進一步探討了突觸可塑現象中的長期增益效應(LTP)與長期抑制效應(LTD) 。由結果發現,連續三次高頻刺激(每秒100Hz)或投予腺苷酸環化酶啟動劑Forskolin (50 μM) 15分鐘後皆可引發LTP現象,前者為NMDA受器依賴性LTP,而後者需要extracellular related-signal kinase (ERK)的參與。此外,投予代謝型谷氨酸受體興奮劑DHPG (25 μM) 10分鐘後,則會引發持續至少1小時的LTD現象 。由此可知,斑馬魚端腦Dl與Dm間的突觸連結為端腦突觸可塑性的關鍵角色,也在探討斑馬魚學習與記憶之神經機轉上提供了一個新的電生理模式。另外,斑馬魚在發生遺傳學等相關人類疾病的研究中也已成為不可或缺的動物模式。X染色體脆折症(Fragile X syndrome, FXS)是發生率較高的人類遺傳性智能遲滯疾病,伴隨著外型異常、認知功能以及行為障礙等症狀。FXS是由於FMR1基因發生突變造成其蛋白FMRP缺失所致,建立FXS的動物模式將有助於我們進一步瞭解致病的細胞與分子機制。因此,本論文的另一研究目的即為利用FMR1基因缺失斑馬魚,探究FMRP在行為及神經突觸可塑性中所扮演的角色。實驗結果顯示,成年斑馬魚因缺乏FMR1基因表達,而產生低焦慮、過動和抑制性逃避性學習障礙現象。而在電生理上,FMRP的缺失對於突觸傳遞功能並無明顯影響,但在突觸可塑性方面,相較於對照組,FMR1剔除斑馬魚端腦LTP的強度會減弱,相反的LTD則增強。綜合此研究的各項重要發現,我們認為FMR1基因剔除斑馬魚在未來應用上,除有助於我們瞭解FXS的致病機轉外,更能協助治療性藥物的開發。Item 探討斑馬魚恐懼記憶之神經機制(2009) 許竣博; Hsu Chun-Po斑馬魚在脊椎動物學習和記憶能力之基因體研究方面是一種功能強大的模式動物。科學家利用斑馬魚的基因轉殖技術,發展出多樣不同基因變異的品系。而在各種突變斑馬魚被大量建立的同時,更迫切需要進行專門針對斑馬魚學習與記憶功能的行為研究。在許多研究抑制性逃避行為實驗,常以其他物種─例如大白鼠當動物模式。然而,目前對硬骨魚類情緒性記憶相關的研究依然相當缺乏,有礙於斑馬魚於神經科學相關研究的推廣。本研究採用改良型之抑制性逃避行為箱來研究斑馬魚之抑制性逃避行為。 本研究之實驗結果顯示:(1)於訓練後24小時,所有斑馬魚將會被再放回淺水區進行測試。此時,斑馬魚會對深水區產生抑制性逃避行為,且停留在淺水區的時間較訓練前有明顯的延長。(2)在消減階段,所有重新暴露於深水區的斑馬魚,會改變其對深水區已建立之抑制性逃避行為,而停留在淺水區的時間較訓練前有明顯的縮短。(3)在訓練後7天,所有斑馬魚放回淺水區進行測試,斑馬魚仍對深水區產生抑制性逃避行為,顯示此恐懼記憶被保存下來的時間至少可達到7天。(4)經過(+)MK-801(一種非競爭性麩胺酸NMDA受體拮抗劑)處理的斑馬魚,其抑制性逃避行為將會被阻斷。 (+) MK-801處理組和對照組之間,斑馬魚對深水區產生抑制性逃避行為而停留在淺水區的時間有顯著差異。(5)在經過訓練後的斑馬魚,端腦內的MAPK的磷酸化程度,會隨著時間而增加,在訓練後1.5小時到達高峰,同時與naïve組比較也有明顯增加。而端腦內的MAPK的表現量並沒有明顯變化。 綜合上述各點,本實驗不只建立一套操作簡單的行為儀器來研究斑馬魚的恐懼記憶,且實驗結果推論斑馬魚恐懼記憶相關的神經機轉與陸生的脊椎動物相似。因此,也許可以增進我們使用斑馬魚來研究神經科學的可行性,並且拓展對精神疾病藥物的開發領域,而在未來配合多樣不同突變的斑馬魚,將有助釐清脊椎動物基因與學習以及記憶功能之間的關係。Item I. Trip6 蛋白質在小鼠腦中之表現 II. 建立人類惡性腫瘤之斑馬魚異體移植模式(2014) 楊程堯; Cheng-Yao Yang壹、 Trip6 蛋白質在小鼠腦中之表現 甲狀腺素受體作用蛋白質 6 (Thyroid receptor-interacting protein 6, Trip6)是一種焦點連接(focal adhesion)分子,它調控一些細胞機制 如:細胞之間的連接(cell adhesion)、細胞的遷移(cell migration)以及 基因轉錄的活化 (gene transactivation)。過去研究指出 Trip6 屬於幹 細胞性(stemness)的基因,在不同的幹細胞中具有較高的表現量。為了探究Trip6 在神經幹細胞所扮演的角色,我們分別檢測了 Trip6 蛋白質在胚胎與成年小鼠大腦中的表現量。發現 Trip6 的 mRNA 主要在胚胎小鼠的腦中有表現,但在成年小鼠腦中則比較低或偵測不到。其蛋白質也只可以在胚胎小鼠的大腦中被偵測到,成年小鼠則否。另外我們在胚胎與成年小鼠的大腦組織切片中,以不同的細胞標誌與 Trip6 進行組織免疫螢光染色。包括幹細胞的標誌 Sox2、增殖中細胞的標誌 Ki67、室管膜細胞的標誌 S100β、神經母細胞的標誌 DCX、神經元的標誌 MAP2、星狀細胞的標誌 GFAP 以及小膠質細胞的標誌(Iba1)。我們發現 Trip6 主要表達在胚胎小鼠的腦室區(ventricular zone, VZ)以及出生後小鼠的腦室下區(subventricular zone, SVZ)內的神經幹細胞(neural stem cells, NSC)中。這樣的結果支持Trip6 可能在調控幹細胞的特性中是一個重要的關鍵。 貳、建立人類惡性腫瘤之斑馬魚異體移植模式 神經膠質母細胞瘤是成人最常見且高侵略性的原發惡性腦腫瘤。它的侵襲力和耐傳統療法使其成為極易復發的惡性腫瘤。Rac蛋白質屬於Rho GTP酶亞家族,其主要功能包括調節細胞運動,增殖和存活。為了探究Rac蛋白質是否可以作為膠質母細胞瘤的新治療標靶,特別是對於神經膠質母細胞瘤幹細胞,我們利用其類癌幹細胞株建立了斑馬魚的異體移植模式來研究抑制Rac蛋白質對於神經膠質母細胞瘤的致癌性影響。 我們將表達控制組的shRNA或者是針對Rac蛋白質做抑制的shRNA序列和綠螢光蛋白的神經膠質母細胞瘤細胞株U251-MG和U373-MG培養於低分化培養液中,以形成腫瘤細胞球(tumorspheroids)。這些體外培養的球體細胞有著幹細胞的特性。我們將這些細胞以顯微注射的方式注射進入受精後兩天大的血管紅螢光轉基因斑馬魚Tg(kdr: mCherry)的卵黃囊。觀察發現注入的癌細胞誘導了血管新生作用的發生,而表達shRacs細胞萎縮且並未引發血管新生作用。另外,注射shRacs細胞的魚隻生存率也較高。 從我們的研究結果,Rac蛋白質會誘導膠質瘤幹細胞引發血管新生作用,並且可做為一個生物標誌。因此,Rac蛋白質可能可以進一步應用在神經膠質母細胞瘤的標靶治療上。 另一方面,我們也利用注射肝癌細胞株Hep3B進入受精後兩天大的斑馬魚卵黃囊中,來觀察Hep3B細胞的遷移現象,此模式約有20%的魚隻可觀察到細胞遷移。Item 熱休克對TG(HSP70:BMP4)基因轉殖班馬魚(Danio rerio)之ntl基因在原腸期表現之影響(國立臺灣師範大學生命科學學系, 2005-12-??) 吳淑美; 林佳琪; 黃聲蘋過去的實驗所製備的TG(HSP70:BMP4)基因轉殖魚品系,可以利用熱緊迫蛋白質(HSP70)之啟動子來驅動BMP4基因Mrna的表現,來探討BMP4基因與頭部軟骨、心臟與消化道器官發育之間的關係。而由文獻中已知BMP4基因在早期胚胎發育背、腹軸形態形成扮演著重要的角色,因此本實驗的目的主要在測試是否經熱休克處理所產生過多的BMP4能影響基因轉殖斑馬魚早期胚胎背、腹軸組織的發育。本實驗以no tail (ntl)脊索標示基因為探討,利用全株原位雜交的方法,來比較不同發育時期的基因轉殖斑馬魚斗胚胎經過37℃,2小時之加熱處理後,對表現在脊索ntl基因的影響。結果顯示:32-64;64-128;128-256細胞期胚胎經熱處理可造成100%bud期胚胎其ntl基因在脊索表現不正常;在256-512細胞期則造成19%bud期胚胎ntl在脊索的兵現在細化(thinner)以及81%有不連續的情形,而在未經熱處理之基因轉殖魚胚胎 ,與不論是否加熱之野生型斑馬魚胚胎ntl在脊索的表現皆是100%正常。因此本實驗結果顯示TG(HSP70:BMP4)基因轉殖魚早期胚胎經過熱處理處,的確可誘發BMP4基因的過度表現,造成ntl的不正常表現進而影響脊索的發育。