生命科學專業學院—生命科學系
Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/58
本系學士班之教育目標為「培育優良之生物科教師及生命科學研究人才」雙軌並行。
因應少子化的衝擊,本系調整相關員額及教學資源之分配,在課程設計及學習活動上,特別注重學生基礎學識、研究能力和研究方法的訓練,使學生可依個人志趣作學習規劃,畢業後有更寬廣的出路。
本系碩、博士班之教育目標則以「培養生命科學研究人才」為主,並兼顧師資培育,故課程設計及學習活動以培養獨立研究能力為主要目標。
News
Browse
9 results
Search Results
Item 芬普尼及酸性水的暴露對於斑馬魚胚胎發育及離子調節之影響(2022) 彭元廷; Peng, Yuan-Ting人類活動引發的淡水酸化已成為全球性的問題,並且已對水生動物構成嚴重的威脅,而酸性水可能會增加水中污染物對水生動物的毒性。芬普尼 (fipronil)是一種苯基吡唑類殺蟲劑,目前廣泛使用於農業活動和寵物用藥。先前的研究表明,芬普尼的殘留物會對魚類造成多種毒性作用。然而,目前尚不清楚芬普尼是否會損害魚類的離子調節及酸化水是否會增強芬普尼的毒性。在這項研究中,斑馬魚胚胎被當成模式動物來回答這些問題。從受精後 4 小時開始,斑馬魚胚胎暴露在不同濃度 (0、0.1、0.5、1、5 和 10 ppm)的芬普尼中 96 小時。芬普尼以劑量依賴性的方式增加死亡率並延遲孵化。 芬普尼 (≧ 1 ppm) 的毒性亦使得身體及肌節的長度、眼睛、耳石囊和嗅窩的面積都與控制組相比呈現下降。此外,芬普尼還降低了側線毛細胞及皮膚離子細胞 (包括 HR 細胞和 NaR 細胞)的數量以及相關的離子調節功能。在酸性水 (pH5) 中,芬普尼導致離子細胞酸分泌的功能更嚴重地下降。這項研究首次表明芬普尼可以損傷皮膚離子細胞並威脅魚類在酸性環境中的生存。Item 氨暴露導致斑馬魚胚胎離子調節損傷及成魚行為改變(2021) 鄭倢安; Cheng, Chieh-An氨(包含氣態的NH3以及離子態的NH4+)為魚類代謝胺基酸後產生的主要含氮廢物,也是常見的環境汙染物。當魚體內氨濃度提高,將會導致魚隻中樞神經受損,抽搐、昏迷甚至死亡。然而,目前研究中多著重在高氨處理後魚類的適應機制,關於氨對魚隻離子調節功能及行為的毒性作用尚不清楚。本研究分為兩個部分,首先利用斑馬魚胚胎作為模式動物,探討氨如何對胚胎離子調節功能造成損傷,接著利用斑馬魚成魚作為模式動物,評估氨處理後斑馬魚的行為改變。在胚胎毒性研究中,浸泡於不同濃度(0、10、15、20 mM)的氯化銨溶液中96小時(4-100 hpf)後,觀察胚胎卵黃囊上離子細胞及表皮角質細胞。結果指出,20 mM氨處理後離子細胞內氧化壓力上升(CellROX螢光亮度顯著上升)且由Rhodamine 123標定的具粒線體活性離子細胞數目顯著下降,顯示粒線體活性降低。此外,以細胞免疫螢光染色標定20 mM氨處理後凋亡細胞數目顯著上升,並觀察到表皮角質細胞結構損傷。綜合以上結果發現,在高氨處理下,斑馬魚胚胎離子細胞及表皮角質細胞損傷,導致斑馬魚胚胎失去體表屏障,體內離子大量流失。而在行為實驗中,將斑馬魚浸泡於不同濃度(0、1、5、10 mM)的氯化銨溶液中4小時後,對游泳行為、社交行為、學習與記憶能力等面向進行不同實驗。結果顯示1 mM氨處理時可以促進學習記憶能力;5 mM時焦慮及恐懼程度提升且群游下降;10 mM氨處理時活動力、社交行為及焦慮程度下降,但恐懼程度上升。綜上所述,在不同濃度氨暴露以及不同的環境刺激下,斑馬魚的游泳、社交、學習等行為改變,而這些改變可能使斑馬魚存活率下降,進一步使個體適存度降低。Item 順鉑導致斑馬魚胚胎離子細胞氧化壓力與細胞凋亡(2020) 吳巧羚; Wu, Ciao-Ling順鉑為現今廣泛使用之化療藥物,卻伴隨腎毒性、神經毒性和耳毒性等副作用,其中主要限制施予劑量的因素為腎毒性。順鉑可經由銅離子運輸蛋白與有機陽離子運輸蛋白進入腎臟上皮細胞,造成腎小管損傷,目前哺乳動物細胞研究模式已知氧化壓力生成是順鉑造成細胞損傷的主要原因之一。斑馬魚是廣泛使用於毒理學研究與藥物測試的模式動物,其仔魚表皮分布的五型離子細胞與哺乳動物腎臟上皮細胞有許多相似之處,因直接暴露於環境,好操作且易觀察。本研究以斑馬魚仔魚表皮離子細胞作為研究順鉑腎毒性之工具,使用活體螢光染色觀察順鉑對離子細胞的影響,來證實順鉑會導致離子細胞氧化壓力生成、粒線體損傷和細胞凋亡。本實驗將斑馬魚胚胎浸泡於不同濃度的順鉑(0、50、100、300、500 或 1000 μM)進行長時間(4-100 hpf)或短時間(96-98 hpf)處理,再使用活體螢光染劑單染或共染的方式,標定斑馬魚仔魚卵黃囊上具粒線體活性離子細胞(Rhodamine 123/MitoTracker)與凋亡細胞(AcridineOrange),並探討當中活性氧化物的產生(CellROX/ MitoSOX)。斑馬魚胚胎分別在順鉑處理 96小時及 2 小時後,Rhodamine 123 標定具粒線體活性離子細胞數目均顯著下降,且凋亡細胞數目顯著上升;斑馬魚胚胎分別在順鉑處理 96 小時及 1 小時後,產生活性氧化物的離子細胞數目或 CellROX/MitoSOX 的螢光亮度均顯著上升。此外,將斑馬魚胚胎進行抗氧化劑 NAC(0、100、300、500 或 1000 μM)與順鉑的長時間共處理,發現 NAC 能降低胚胎的死亡率,並減緩順鉑對離子細胞所導致的氧化壓力與損害。由以上結果可證實順鉑會導致離子細胞氧化壓力生成和粒線體損傷,並引起細胞凋亡,而抗氧化劑 NAC 可作為順鉑毒性的保護劑。Item 水通道蛋白(aqp1a)在斑馬魚胚胎表皮參與二氧化碳的運送(2011) 趙珮伶; Pei-lin Chao水通道蛋白(aquaporins, AQPs)是一群執行水分子通透的細胞膜蛋白。此外,有些AQPs也被發現具有二氧化碳、甘油、氨與尿素的通透性。因此AQPs 依其功能又區分成三亞群,分別為aquaporins, aquaammoniaporins, 與 aquaglyceroporins三群。在哺乳類研究發現,AQP1缺失的紅血球會降低二氧化碳通透性。最近研究將斑馬魚(Danio rerio) aqp1a表現於蛙卵會增加細胞膜對二氧化碳通透性。然而,目前仍沒有活體的實驗證實AQPs在動物體內參與二氧化碳(carbon dioxide, CO2)通透。本研究利用斑馬魚仔魚為模式動物,探討aqp1a在仔魚表皮細胞上的分佈與功能。將1 % CO2馴養一週的仔魚以real-time PCR分析,結果顯示aqp1a mRNA表現量增加。利用原位雜交與抗體染色標定,發現aqp1a大量表現於卵黃囊表皮上的H+-pump-rich cell與Na+ -pump-rich cell,其他表皮細胞則有少量的表現。利用morpholino knockdown弱化aqp1a蛋白的表現再利用離子選擇電極技術(SIET)分析碳酸排放,發現aqp1a基因弱化的仔魚碳酸的排放減少,顯示aqp1a在胚胎體表細胞扮演CO2通透的功能。Item 以斑馬魚模式進行腦功能側化相關研究(2017) 吳曜如; Wu, Yao-Ju斑馬魚(Denio rerio)因其胚胎透明、容易飼養及觀察等優點,近年成為神經與發育生物學研究之新興動物模式。斑馬魚的神經系統與大多數硬骨魚類似,其端腦 (telencephalon) 的主要構造、相對體積大小、解剖位置及功能與哺乳類之邊緣系統 (limbic system) 相似,為一個易於操作的端腦功能研究模式。本篇論文即利用斑馬魚的各項研究優勢,進行三個部分的研究,以探討斑馬魚端腦的功能、相關之運作過程與訊息傳遞之機轉。在第一章中,我們延續先前的實驗成果,利用吸引法(aspiration)對端腦進行直接的破壞,以探究端腦在空間記憶形成上所扮演的角色,結果顯示端腦的左、右兩半球,分別對於空間及情緒性記憶 (emotional memory) 有著不同的影響,特別是在獲取 (acquisition) 及重新擷取 (retrieval) 的過程中,而對端腦進行單側破壞(unilateral ablation),均可干擾情緒性記憶的形成。在第二章中,由於過去文獻發現X染色體脆折症 (fragile X syndrome) 患者在腦側化 (cerebral lateralization) 的表現上受到影響,故藉著fmr1基因剔除品系斑馬魚,探討此斑馬魚身上,是否會呈現類似人類病患之異常情緒性行為,結果證實了fmr1之缺損,會造成斑馬魚情緒性行為之發展異常,也會干擾了抑制性逃避記憶 (inhibitory avoidance memory) 的形成。在第三章中,主要使用了電生理的實驗方式,探究斑馬魚端腦外側 (Dl) 到端腦內側 (Dm) 之訊號傳遞。我們發現不只通往同側的端腦內側 (ipsilateral telencephalic Dm region) 有訊號傳遞,而在對側 (contralateral) 端腦之內側亦有類似的訊號傳遞,並且兩側同時存在着代表神經可塑性的長期增强效應long-term potentiation (LTP) 及長期抑制效應long-term depression (LTD) 現象,兩者的作用機制需要麩胺酸NMDA及代謝性受體 (metabotropic glutamate receptor) 的參與;其神經可塑性之LTP與LTD模式,在左、右側端腦中的表現並非完全相同,這呼應了第一階段的實驗結果,進一步證實了斑馬魚的左右側端腦,在處理學習與記憶的功能時,扮演著不同的角色。最後我們也發現,有別於哺乳類動物,斑馬魚主要藉由前連合 (anterior commissure) 構造進行兩側端腦的訊息傳遞。 總結上述三階段的研究成果,可證明斑馬魚端腦中亦存在著腦側化的現象,而斑馬魚確實能應用於探討腦側化的機轉研究。Item 前列腺素E2在斑馬魚酸鹼調節之功能(2018) 彭彥松; Peng, Yan-Sung前列腺素E2(Prostaglandin E2)對於魚類酸鹼平衡的調節仍是未知的。PGE2可透過四型受體(EP),進而影響不同的生理功能。哺乳類主要利用腎臟維持酸鹼平衡,曾有研究發現PGE2參與兔子集尿管的排酸機制,而兩生類也需要透過表皮組織進行酸鹼平衡,排酸能力會受到不同的PGE2濃度而有所改變。然而,生活在水中的魚類,所需要面對環境改變的壓力比起前兩者更大,為了解PGE2與魚類酸鹼調節之間的關係,本研究將斑馬魚進行七天酸處理後發現鰓上PGE2相關的基因表現量上升。此外,將PGE2合成酵素弱化後,排酸能力、HR細胞數量以及排酸相關蛋白質的基因表現量上升。而將受體的基因ptger1a或ptger1b弱化後,在酸性環境下,可能藉由降低碳酸酐酶(ca2)基因表現量進而導致排酸能力無法上升。由此可知,PGE2可能參與斑馬魚的排酸機制,且在正常環境中的運作機制與酸性環境可能不同。Item N-乙醯半胱氨酸對斑馬魚仔魚側線毛細胞的影響(2019) 馮瑩茜; Phong, Ying-ChiannN-乙醯半胱氨酸(N-acetyl cysteine,NAC)是一種作為營養食品的抗氧化劑。在水產養殖上使用N-乙醯半胱氨酸餵食吳郭魚亦可以降低微囊藻毒素和柱孢藻毒素所產生的氧化壓力。此研究的目的是想要探討抗氧化劑NAC的潛在毒性及致死劑量,以便未來在魚類上作為抗氧化劑的應用。此外測試NAC對於新黴素所造成耳毒性傷害是否有保護作用。我們將斑馬魚長時間及短時間曝露於NAC,並觀察NAC對斑馬魚的影響。我們的研究結果顯示NAC會對斑馬魚仔魚造成死亡的現象,並且其藥效與濃度成正相關。另外,NAC對各個發育的指標都會帶來負面的影響,如存活率、孵化率、斑馬魚仔魚的體長及心跳速率。另外,使用FM1-43這活體染劑,可得知NAC在急性或是慢性處理下都會減少斑馬魚仔魚的毛細胞。急性NAC處理後會增加毛細胞的氧化壓力。除此之外,NAC亦會減少斑馬魚仔魚卵黃囊上的離子細胞密度。從以上的結果可得知不管是急性或是慢性的NAC處理都會對斑馬魚造成毒性傷害。Item 以顯微影像分析技術測量奈米銀與奈米銅對斑馬魚心血管功能之影響(2018) 于清華; Yu, Ching-Hua奈米材料由於其特性有別於原本的大分子型態,自二十世紀發現後至今已被廣泛用於工業上,如作為殺菌介質的奈米銀,以及用於生物、電化學感應器的奈米銅。然而,對於這些奈米材料可能帶來的環境汙染與對生物體的危害,仍缺乏完整的認識。本研究以斑馬魚的胚胎作為動物模式觀察奈米銀、奈米銅粒子的毒性。在浸泡處理四天後,觀察胚胎的死亡率、孵育率、體長的影響,並透過我們發展的高格數與高畫質顯微攝影技術,測量胚胎心血管功能的受損情形。實驗結果發現,奈米銀與奈米銅在3 ppm就會對上述生理指標有顯著的危害。在心血管功能測量上,發現奈米銀在1 ppm就會導致心輸出量的下降,而3 ppm處理會更進一步地影響心室的收縮力與心率;奈米銅則在0.1 ppm的濃度下就會引發心室體積的減少,在3 ppm處理下還會造成收縮力的下降,而這些奈米金屬引發的心室功能的下降導致了動脈血流速度減緩。綜合以上結果,我們證實了奈米銀、奈米銅對生物體不容忽視的毒性威脅;同時,也驗證了分析心血管功能的顯微攝影技術,在毒理實驗中提供了更敏感的生理指標。Item 金屬奈米顆粒對斑馬魚仔魚的影響(2017) 方鏡雅; Fang, Ching-Ya近年來奈米科技日新月異,也成為炙手可熱的科技產業之一,但是我們也需要關注金屬奈米顆粒可能對環境及生物造成的風險,在過去的研究中大多是探討金屬奈米顆粒對動物的死亡率、胚胎發育、細胞染色觀察、行為測量、基因表現,較少有更深入的發現。本篇研究目的是利用斑馬魚仔魚為動物模式,探討奈米銅(CuNP)、奈米銀(AgNP)與傳統的金屬離子硫酸銅(CuSO4)、硝酸銀(AgNO3)對仔魚的傷害。主要利用掃描式離子選擇電極技術(SIET)測量細胞的功能,結果顯示毛細胞浸泡在CuSO4、CuNP、AgNO3和AgNP 4小時後,鈣離子流入量下降,而離子細胞的氫離子梯度顯著下降,這說明了毛細胞與離子細胞功能明顯下降。利用FM1-43 及Rhodamine123標定側線毛細胞、離子細胞,結果顯示仔魚浸泡CuSO4、CuNP、AgNO3和AgNP 4小時後,毛細胞數目顯著下降,而離子細胞密度顯著減少。利用qPCR定量分析離子細胞上參與排酸蛋白的基因,結果顯示仔魚浸泡CuSO4、CuNP、AgNO3、AgNP 24小時後,nhe3b的mRNA表現量有顯著提升,表示仔魚可能對Na+吸收與H+排出受到影響,所以SIET測量到H+排出減少可能與此有關。利用CellROX標定產生reactive oxygen species (ROS)的離子細胞,結果顯示離子細胞在CuSO4 (0.5 ppm)、CuNP ( ppm)、AgNO3 (50 ppm)和AgNP (0.1 ppm) ROS有顯著上升,這可能是造成細胞損傷的原因之一。仔魚浸泡在CuSO4、CuNP、AgNO3及AgNP 4小時後,逆流行為顯著下降,最大游泳速度結果顯示只有CuSO4 (0.5 ppm)、CuNP (0.5 ppm)組有顯著下降,在活動力的測量結果發現仔魚只有在AgNO3 (50 ppm) 及AgNP (1.5 ppm)有顯著降低。綜合以上結果證實CuNP、AgNP除了會造成行為異常、細胞產生ROS及基因表現量改變害之外,另外也發現細胞的功能有受到影響,然而金屬奈米顆粒造成細胞的傷害機制仍需進一步研究。