學位論文

Permanent URI for this collectionhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/73900

Browse

Search Results

Now showing 1 - 10 of 14
  • Item
    臺灣雲解析差時系集颱風定量降水預報應用研究
    (2023) 陳鑫澔; Chen, Shin-Hau
    臺灣的颱風降雨雖為主要的水源之一,但也常因此造成災害。數值天氣預報開發以來,時常面臨著不確定性造成的困難,眾多研究者嘗試使用各式方法獲取防災資訊,本研究面對臺灣颱風防災的需求,嘗試在現有資源限制下,建構針對臺灣颱風降水於防災的建議系統。具體而言,本研究使用雲解析風暴模式,建構上採用了2.5km水平格點間距,每六小時進行八天的預報,在本研究的十個目標颱風內,經過評估後皆能在各颱風風雨影響臺灣前至少52小時前,也就是大約兩天以前,找出颱風影響期間總累積降雨量的相似技術得分(Similarity Skill Score,簡稱SSS) 大於0.6的高解析度的降水情境,顯示此方法實際應用上可以在有反應時間的前提下,提供有效的降水情境。 防災事前可以針對最糟糕的降水情境做防範,但為了更有效的找出較有參考價值的預報,本研究針對十個西行侵臺颱風選出105個預報參數,使用機器學習嘗試建構能夠預估降水指引(SSS為其中之一)與路徑指引的模型並進行評估,評估後大多數機器學習預估的SSS皆能適度掌握不同初始時間預報中的實際降水SSS好壞。機器學習預估的結果約在實際颱風影響臺灣26小時前可以產出,當預估的SSS中位數達0.6以上時,實際的SSS也有71%超過0.6,顯示可以在中心登陸兩天前預先指出那些預報的可信度低,那些的可信度高。 本研究進行機器學習訓練時進入模型的颱風數量上不多,可當作ㄧ初步之研究,文章中亦討論了許多颱風預報相關性分析,並提出了幾個可能的改進方向。總體來說,高解析差時系集預報輔以機器學習可在臺灣西行颱風的防災預警上,提供有效的降水情境,並指出較具可信度的預報。
  • Item
    瑪莉亞颱風(2018)快速增強及結構演變之數值模擬研究
    (2022) 林庭州; Lin, Ting-Zhou
    瑪莉亞颱風(Maria)於 2018 年 7 月 3 日於關島東南方海面生成,從 5 日至 6 日,其強度迅速增強進入快速增強(Rapid Intensification; RI)過程,並於 RI 結束後不到 24 小時便進行了一次眼牆置換。本研究利用 WRF 模式搭配歐洲中期天氣預報中心 (European Centre for Medium-Range Weather Forecast;ECMWF)之 ERA5 全球模式資料為初始場,同時利用颱風動力初始化方式,分析瑪莉亞颱風 RI 過程以及結構變化。模擬結果顯示, RI 的發展主要受到內外兩對流區強度的影響。在 RI 開始前,內核區高層的對流活動,以及較低的環境垂直風切,使得潛熱能夠有效釋放,形成高層暖心結構,進而使颱風中心最低氣壓下降,高層暖心與中心最低氣壓之間的正回饋,有效提高颱風的強度,使颱風進入 RI階段。在 RI 後期,即便颱風對流強度沒有顯著的減弱,但是由於強對流活動主要集中在外圍,能量無法有效傳遞至內核區,導致內核區對流減弱,使得高層暖心結構無法維持,颱風強度停止增強。為瞭解海表溫度以及海表通量傳輸對於 RI 的影響,本研究進行改變海溫以及改變海表通量計算方式之敏感度實驗。結果顯示,當海溫降低2°C 以上時,不會發展 RI 。當海溫降低1°C 時,依舊會發展 RI ,但是受限於海表熱通量不足及垂直結構傾斜等影響,高層暖心結構以及 RI 持續時間較短。當海溫增加1°C 時,颱風強度不論是在 RI 前、中、後都有更為顯著的增強,高層暖心結構更能夠維持,且垂直結構較不為傾斜。而改變海表通量計算方式,使得海表面阻力減小以及海表向上傳輸的熱通量增加,對於 RI 後期的增強更為顯著,且高層暖心結構更為明顯。
  • Item
    天鴿颱風(2017)快速增強之模擬與渦度分析
    (2021) 周振潮; Chao, Chan-Chio
    天鴿(Hato)颱風於2017年8月22至23日通過南海時,其強度迅速發展達到快速增強(Rapid Intensification,RI),於23日0600 UTC登陸澳門並造成當地有史以來最嚴重的災情。本研究利用WRF模式以歐洲中期天氣預報中心(European Centre for Medium-Range Weather Forecast ; ECMWF)之ERA5全球模式為初始場,動力降尺度輸出空間解析度為3 km預報場,分析颱風內部結構與發展過程,藉以探討其RI之成因。 結果顯示,於RI初期,慣性穩定較低觸發徑向加速,在颱風中心強迫上升運動,加上環境垂直風切減弱,建立有利環境,使對流爆發(Convective Bursts,CBs)形成。於RI發展期,加速對流爆發(w>2 m⋅s^(-1),B>0.25 m⋅s^(-2))是促進RI發展的重要角色,透過底層輻合上升與潛熱釋放,使高層暖心形成,其相對低壓又促進對流產生,產生由熱力效應所主導之正回饋,有效提高颱風的強度。於RI成熟期,慣性穩定度達到最大值後3小時裏,底層輻合再度增加,搭配中層大量的輻散作用,造成以動力效應為主導的對流,與此同時颱風強度到達峰值,受地形抬升後,颱風登陸澳門。對流分佈與垂直風切有關,上升對流主要集中在下風區,佔有面積雖少,卻完成大量的質量通量傳輸,而下沉對流則集中在上風區左側,有壓抑暖心的作用。 此外,為瞭解海表溫度(Surface Sea Temperautre,SST)對RI的影響,本研究也進行有關海溫敏感度實驗。結果顯示,當SST降低1度時,因加速對流爆發數量減少,導致暖心無法形成,雖仍有RI發展,但高層增溫不明顯。當SST降低2度以上,對流爆發數量大量減少而沒有RI發展。因此,在本個案中高的SST有利於更多的加速對流爆發產生,其導致暖心結構的形成,所以在過程中扮演著主導角色,其數量與成熟度,將影響RI的強度。
  • Item
    臺灣地區熱浪與伴隨環境場分析
    (2020) 林冠宏; Lin,Guan-Hong
    近年來熱浪的發生越來越受到關注,在歐美地區發生較嚴重的熱浪事件如:1995 年芝加哥熱浪、2003 年巴黎熱浪以及 2010 年俄羅斯熱浪...等,皆伴隨野火或熱傷害的發生,大大的影響當地的區域經濟和生態系統,甚至形成大量的傷亡。在前人的研究中,歐美地區的熱浪成因主要受到阻塞高壓影響,高壓的下沉區造成乾燥且穩定的大氣環境,導致區域內形成持續性異常高溫的現象。 臺灣熱浪的環境場研究大多針對太平洋副熱帶高壓進行討論,但是臺灣不同於歐美地區,在夏季除了太平洋高壓還會受到西南季風、颱風等的影響,這些環境場皆有機會為臺灣帶來高溫。本文針對 1979-2014 年間討論了熱浪指標的選擇,最後決定利用前人使用的相對指標定義,藉由討論指標來能尋找適合討論臺灣地區的熱浪強度。並選定的標準分析臺灣熱浪環境場。在相對指標的分析結果顯示,當我們以相對指標定義的 T1 選擇在 95 百分位以及 T2 在 85 百分位時,能最接近實際溫度情況進而作為指標百分位的選擇。 在高壓環境場分析,太平洋副熱帶高壓向西延伸,此時臺灣地區會受到高壓沉降作用,伴隨穩定且乾燥的大氣環境,使臺灣地區會約有 1.5 度以上的增溫,而當臺灣地區受到副高影響時,其他區域也會因副高的位置伴隨其他天氣系統的發生。熱浪時段中颱風環境場占整體熱浪時段約五分之一,而且複合環境場影響的平均熱浪天數會來的比單一環境場的熱浪天數多 3-4 天,這些被延長的熱浪時段大多來自於颱風與西南風的貢獻。在整體環境場討論中,臺灣位在颱風與高壓下沉的區域,增溫區域除了有高壓影響時北部山區增溫明顯的特徵外,西南部的增溫可能來自於颱風效應。當西南風增強時,此時的高壓區位在南海,伴隨北緯25-30 度間鋒面生成,臺灣會位於鋒面交界面以南鋒前暖區的位置,暖區乾燥的西南風加上臺灣地形作用,使得背風增溫又更加明顯,甚至增溫現象會來的比高壓或西南風來的強。
  • Item
    影響泰利颱風(2017)路徑北轉關鍵因素之研究
    (2020) 卓均奐; JHUO, Jyun-Huan
    泰利(Talim)颱風於2017年9月9日形成,雖未登陸台灣,但中央氣象局與全球多個預報中心針對泰利颱風路徑預報皆未預測其路徑北轉現象。本研究利用WRF模式針對泰利颱風進行數值模擬實驗,採用NCEP FNL及ECMWF ERA5兩種不同全球模式初始場資料進行不同初始時間之系集預報,藉以探討泰利颱風路徑北轉之關鍵因素。 模擬結果顯示,EN_ERA5組較EN_FNL組在平均路徑誤差方面有較佳之模擬結果,根據此結果探討環境場中西北太平洋周遭天氣系統與泰利颱風北轉之間的關係,利用EN_ERA5組系集成員500 hPa高度場與轉向角α之相關性檢驗分析,顯示環境場中杜蘇芮颱風存在、副高系統東退與北方高層槽東移三因素為影響泰利颱風路徑北轉之關鍵因素,且杜蘇芮颱風對泰利颱風路徑北轉之貢獻程度約為副高系統東退與北方高層槽東移的兩倍。 此外,使用ECMWF ERA5較NCEP FNL資料提早預報杜蘇芮的生成,其原因為ECMWF ERA5相對NCEP FNL在初始場中同化更多觀測資料且具備較多有利於颱風生成條件,提供颱風生成初期良好之發展環境。
  • Item
    新降尺度預報於颱風軌跡季節模擬的應用
    (2011) 黃沛語
    颱風模擬對西北太平洋地區有其重要性,故本研究採用Emanuel et al.(2006)提出一種不需龐大計算資源,即可精確模擬大西洋颶風軌跡長期變化的降尺度方法,來模擬西北太平洋熱帶風暴軌跡。由於西北太平洋與大西洋的大尺度背景風場不盡相同,為探討駛流層高度、β偏移效應及季內震盪對西北太平洋氣旋軌跡的影響,因此本研究調整Emanuel方法,共設計六種熱帶風暴軌跡降尺度方法。 西北太平洋熱帶風暴氣候軌跡可分為向西北、向西與向北轉向三種,因此本研究將颱風侵襲區域分為向西北影響台灣與中國東部沿海之A區、向西行至菲律賓之B區,及向北轉向影響日本之C區。結果顯示850 hPa和200 hPa加權與850 hPa至300 hPa平均質量加權之兩種駛流層,皆適用於西北太平洋地區。而隨緯度增加向北分量的β偏移數值,可改善等值β偏移之模擬軌跡移速。季內振盪對130 oE以西影響顯著,增加向西北移行影響台灣之軌跡,明顯改進夏秋兩季熱帶風暴影響在A區的氣候模擬。 熱帶風暴影響三大區域皆有明顯年際變化,然而A區秋季有緩慢上升趨勢,C區有年代際震盪訊號,B區長期訊號則不明顯。降尺度方法在年際變化模擬,可掌握三區域大致隨時間變化趨勢,夏季整體模擬較秋季佳。影響台灣與中國東部的A區模擬,兩季皆以10天以上低頻訊號環境風場較為適用,亦掌握到秋季緩慢增加趨勢;侵襲日本之C區模擬,以月平均風場為環境流場方法較佳。顯示季內振盪與太平洋副高分別是影響颱風向西北與向北轉向的重要因素。 本研究建立之降尺度方法,基本上可掌握西北太平洋地區夏秋兩季氣候熱帶風暴軌跡特徵,以及熱帶風暴影響區域之氣候場與年際變化。因此若大尺度風場與季內震盪模擬良好,可利用本研究降尺度方法來模擬熱帶風暴軌跡。
  • Item
    台灣東北海域之黑潮
    (2007) 張育綾; Chang, Yu-Lin
    本研究使用一個海洋數值模式、衛星遙測資料以及實測航次資料完成以下研究,台灣東北海域數值模擬研究包含以下兩個部份:南東海陸棚湧升流之季節變化;納莉颱風與黑潮的海氣交互作用。 南東海陸棚湧升流為全年湧升的現象,不同季節受到不同機制影響呈現的季節變化趨勢也不相同,由表層積分至100米的平均垂直速度主要受黑潮擺動影響,夏天當黑潮遠離台灣東岸時,湧升較強,冬天黑潮入侵東海陸棚抑制了湧升流發展,於是湧升較弱,由表層至30米的垂直速度受當地風場的影響,冬天湧升較夏天強。 納莉颱風與黑潮之間存在著海氣交互作用,納莉颱風數度穿越黑潮使得其強度多次變化,當颱風行經黑潮北邊時,海洋形成了一個渦漩,在黑潮上與黑潮南邊則沒有觀察到此現象,原因來自受到黑潮強勁流速影響以及地形限制。當颱風行進速度緩慢時,能影響的海洋深度也較大,此外颱風也在海洋留下了震盪的現象,此現象由周期判定為為近慣性震盪。在海表面溫度圖當中所看到的冷水海域則是颱風過後所造成的湧升現象,由衛星測葉綠素甲圖以及海表面溫度圖得知,此湧升現象確實將次表層較冷與富營養鹽的海水帶至表層。
  • Item
    西北太平洋熱帶氣旋移行速度之影響機制探討
    (2014) 林學孜
    本研究目的在探討影響颱風移行速度的機制。本研究篩選在1991-2010年期間,向西與向西北移行的颱風個案中,經過125°-130°E後36小時內,平均移行速度最快10個與最慢10個個案進行分析。 研究結果顯示,較快的個案在軌跡與生成位置有一致性。大多生成於140°E以東,軌跡呈現東南向西北走向,大多往南中國海、菲律賓一帶,生命史較長。較慢的個案則不規則,軌跡較容易經過台灣,因為滯留時間長,所以可能對台灣影響較大。由移行速度的變化可看出環境場駛流對移行速度的影響,較快(慢)的個案大多從生成開始移行速度就很快(慢)。除了環境場駛流外,颱風本身強度產生的β偏移也會影響颱風移行速度。統計結果顯示較慢的個案有90%為非強颱,較快的個案並無明顯的差異。這樣的結果可能與其生成位置相關。 季內振盪亦為影響颱風移行速度的原因之一。颱風移行速度與東西風相位關係顯示,無論是慢或快的個案,很少出現在東風相位,與前人的研究結果一致。較快的個案多發生在西風相位時,季風槽向東延伸,大尺度風場有利颱風西行。較慢的個案多發生在氣候平均時期,風場提供駛流較弱。 本研究進一步透過擾動渦度趨勢方程診斷。較快的個案正渦度趨勢區的位置都比較慢的個案來的遠,強度也較強,使移行速度較快。透過計算發現平流項(VA)與輻散項(VD)在颱風行進上較為重要,其中VA項為最大項,對颱風移行速度貢獻最大。VD項主要貢獻在增加颱風強度,但較快的個案有偏移至颱風移動方向右前方的現象,對颱風移行速度有些微貢獻,顯示對於移動較快的個案,氣旋的移動不完全是動力過程,熱力過程可能也有些影響。 將對颱風移動貢獻最大的VA項分成四小項來分析。結果顯示較快與較慢的個案,平均流造成的擾動渦度平流(VAm)項與beta效應(V-beta)項都呈現向西北傳遞的正渦度平流,代表在颱風向西北移動的移行速度上,駛流扮演重要的角色,強度差異與正渦度趨勢區的遠近,是造成颱風移行速度差異的主因。擾動流造成的平均相對渦度平流(VAe-m)項與VAm及V-beta項呈現反相位,分布上類似但正負相反,抵銷VAm和V-beta項的正貢獻,有減速的作用。本研究結果顯示大尺度環境場和颱風強度,可能是造成颱風移行速度差異的主因。颱風動力與熱力過程均可能影響移動速度。
  • Item
    奈格颱風引起遠距降雨之個案研究
    (2014) 林士然; LIN SHIH-JAN
    秋颱奈格(Nalgae)於2011年10月1日至3日間影響臺灣,颱風中心距離臺灣甚遠,但臺灣東北部地區降下超大豪雨,排汛不及造成水災。本研究利用WRF模式模擬,藉以分析臺灣東北部劇烈降雨成因、測試颱風存在與否對環境氣流及水氣傳輸的影響,並改變臺灣地形高度進行敏感度實驗,此外,亦選取同年份相似路徑之納莎(Neseat)颱風做環境場之對照比較,討論環境場與臺灣地區降雨的關聯。 模擬結果顯示,臺灣東半部發生強降水可分為兩個時期,第一為颱風環流與來自太平洋的東風輻合後形成對流,對流隨氣流方向進入臺灣陸地,在迎風面降下豪雨;第二為颱風東側的南風環流與東風氣流匯合後,兩者北偏與乾冷之東北季風輻合,發展出旺盛對流,加以宜蘭地區的地形效應,使該處出現劇烈降水。另外,若將颱風移除,臺灣南側暖溼氣流北送的情勢減弱,使累積雨量降低、降水區域改變。而將奈格颱風與納莎颱風的環境場相互對照後發現,東北季風對於東北部出現超大豪雨有重要貢獻。 歸納上述結果,本個案造成臺灣出現遠距降水之原因有:(1)颱風環流將南邊的暖濕水氣北送。(2)南來的暖溼氣流與乾冷的東北季風交會提供對流發展之有利條件。(3)對流系統移入時,受到地形抬升而增強。(4)宜蘭地區之地形利於氣流匯集,輻合現象顯著。
  • Item
    行經130°E-135°E 15°N-25°N區域的颱風侵台或轉向與南亞高壓及次要高壓中心位置的關係
    (2007) 楊伯原
    從1996-2005年間發源於北太平洋西南海域且經過130°E-135°E, 15°N-25°N的颱風後來侵台或轉北者,有32個颱風,其中有23個颱風會繞行100 mb等壓面高壓中心,佔72%。這23個會繞行100 mb等壓面高壓中心的颱風中,有15個轉向, 8個侵台。所有轉向的颱風,其 100 mb等壓面高壓中心,比較靠東南,侵台者較偏西北。 北太平洋西南海域颱風行經關鍵區後轉向者,平均來說,在颱風頂上100 mb等壓面上,比侵台者有更強的南風與西風。100 mb等壓面高壓環狀系統的西北側的輻散現象,造成其下方產生輻合區,其輻合現象有利颱風發展。所以颱風避開下對流層輻散區,偏北進入下對流層輻合區時,產生相當於對100 mb等壓面高壓中心繞行的現象。地面高壓在高空向颱風所在方向傾斜後,與100 mb等壓面高空高壓結合。100 mb等壓面高空高壓也引導500 mb等壓面駛流層風向量,避開高空輻合投射區,指向高空輻散投射區。