學位論文
Permanent URI for this collectionhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/73908
Browse
28 results
Search Results
Item 銀離子於酸性環境中對斑馬魚胚胎發育及離子調控之危害(2021) 孔耕心; Kung, Geng-Xin奈米銀在近年來被廣泛地運用於醫療及化妝品產業,其廢棄材料表面釋放出的銀離子會危害水生生物。然而,目前對於銀離子在不同酸鹼值環境中的毒性差異並不瞭解。本研究利用斑馬魚胚胎為水生生物模式,將其暴露於含有0、0.1及0.25 ppm AgNO3之pH 5或pH 7環境中,以評估銀離子毒性的差異。在暴露96小時的結果中可以得知銀離子的胚胎發育影響程度隨著濃度升高而增加。在銀離子的暴露後胚胎體長顯著下降,而卵黃囊面積則會增加。銀離子亦導致胚胎耳石囊面積及耳石面積下降,影響胚胎的內耳系統。另外,側線神經丘及毛細胞數目下降也反映出銀離子對胚胎側線的影響。值得注意的是:酸環境(pH 5)中會增加銀離子在體長、卵黃囊、耳石囊以及耳石上的影響。另一方面,銀離子降低離子細胞開口面積及數目,阻礙胚胎的離子調節功能,並且導致NaRC及HRC數目顯著降低,增加胚胎適應酸環境的困難性。另外,30分鐘及2小時的實驗中可發現:銀離子會藉由增加離子細胞的氧化壓力程度,進而誘發細胞凋亡機制。總結以上結果,本研究認為酸環境會增加銀離子對魚類的危害。Item 氨暴露導致斑馬魚胚胎離子調節損傷及成魚行為改變(2021) 鄭倢安; Cheng, Chieh-An氨(包含氣態的NH3以及離子態的NH4+)為魚類代謝胺基酸後產生的主要含氮廢物,也是常見的環境汙染物。當魚體內氨濃度提高,將會導致魚隻中樞神經受損,抽搐、昏迷甚至死亡。然而,目前研究中多著重在高氨處理後魚類的適應機制,關於氨對魚隻離子調節功能及行為的毒性作用尚不清楚。本研究分為兩個部分,首先利用斑馬魚胚胎作為模式動物,探討氨如何對胚胎離子調節功能造成損傷,接著利用斑馬魚成魚作為模式動物,評估氨處理後斑馬魚的行為改變。在胚胎毒性研究中,浸泡於不同濃度(0、10、15、20 mM)的氯化銨溶液中96小時(4-100 hpf)後,觀察胚胎卵黃囊上離子細胞及表皮角質細胞。結果指出,20 mM氨處理後離子細胞內氧化壓力上升(CellROX螢光亮度顯著上升)且由Rhodamine 123標定的具粒線體活性離子細胞數目顯著下降,顯示粒線體活性降低。此外,以細胞免疫螢光染色標定20 mM氨處理後凋亡細胞數目顯著上升,並觀察到表皮角質細胞結構損傷。綜合以上結果發現,在高氨處理下,斑馬魚胚胎離子細胞及表皮角質細胞損傷,導致斑馬魚胚胎失去體表屏障,體內離子大量流失。而在行為實驗中,將斑馬魚浸泡於不同濃度(0、1、5、10 mM)的氯化銨溶液中4小時後,對游泳行為、社交行為、學習與記憶能力等面向進行不同實驗。結果顯示1 mM氨處理時可以促進學習記憶能力;5 mM時焦慮及恐懼程度提升且群游下降;10 mM氨處理時活動力、社交行為及焦慮程度下降,但恐懼程度上升。綜上所述,在不同濃度氨暴露以及不同的環境刺激下,斑馬魚的游泳、社交、學習等行為改變,而這些改變可能使斑馬魚存活率下降,進一步使個體適存度降低。Item 系統農藥芬普尼對斑馬魚神經系統的影響(2020) 徐代軒; Hsu, Tai-Hsuan芬普尼 (fipronil) 是一種苯基吡唑類殺蟲劑,可選擇性抑制昆蟲中的γ-氨基丁酸(GABA)受體。儘管芬普尼已成為在水生環境中使用最廣泛的藥物,但很少有研究評估芬普尼的神經毒性對於水生脊椎動物的感覺和運動系統的影響。在本碩士論文的研究中,我們選擇斑馬魚(Danio rerio)實驗動物來探討芬普尼對感覺與運動系統的神經毒理作用。我們評估了急性芬普尼暴露對斑馬魚存活率,側線毛細胞數量以及神經毒性的影響,此外,我們比較了正常與芬普尼處理下斑馬魚的游泳軌跡熱圖、速度和距離的差異。我們的實驗結果發現成年斑馬魚暴露在0.5、1.0和2.0 ppm芬普尼的水中環境24小時,與正常處理斑馬魚比較,存活率隨著芬普尼濃度顯著遞減。而斑馬魚胚胎暴露在0.1、0.5和1.0 ppm芬普尼的水中環境24小時,與正常處理斑馬魚比較,側線毛細胞數量也是隨著芬普尼濃度顯著遞減。透過組織病理學和西方墨點法研究發現,成年斑馬魚暴露於1.0 ppm芬普尼的水中環境24小時,大腦組織的氧化壓力、發炎與細胞凋亡,與正常處理斑馬魚比較,則是顯著增加。通過影像追蹤觀察,成年斑馬魚暴露在0.1和0.5 ppm芬普尼的水中環境24小時,游泳軌跡的速度和距離隨著芬普尼濃度顯著遞減,儘管芬普尼的神經毒性主要針對無脊椎動物昆蟲的GABA受體而開發,但我們的研究結果發現,芬普尼不但會減低斑馬魚的存活率,還會透過損傷側線的毛細胞數量以及產生氧化壓力、發炎與細胞凋亡來損傷大腦組織來影響斑馬魚的感覺和運動系統。這結果推論系統農藥芬普尼誘導的神經毒性會損傷水生脊椎動物的感覺與運動系統。Item 天然植化素槲皮素與蘿蔔硫素對糖尿病大鼠的泌尿系統保護機轉(2020) 林嘉發; Lin, Chia-Fa本論文主要在探討天然植化素(phytochemicals)對於糖尿病大鼠的泌尿系統保護作用,並研究有關細胞凋亡(apoptosis)、細胞自噬(autophagy)、發炎性細胞凋亡(pyroptosis),和粒線體功能的作用機轉。我們建立了兩種不同誘發糖尿病的動物模型,第II型糖尿病(Type 2 diabetes mellitus, T2DM)模型,與第I型糖尿病(Type I diabetes mellitus, T1DM)模型。T2DM模型主要研究對象是第II型糖尿病(Type 2 diabetes mellitus, T2DM)之腎臟細胞損傷與保護,而T1DM模型則是用於研究糖尿病的排尿功能障礙,這通常會發生在較嚴重的T1DM高血糖狀態,因為T1DM模型可以快速誘導糖尿病膀胱(diabetic bladder)損傷。 我們萃取富含槲皮素(quercetin)的番石榴汁,並混合不同比例的海藻糖(trehalose),來研究其對於T2DM大鼠腎臟和胰臟損傷的保護作用,並採用高效液相色譜分析法以測定番石榴汁的有效成分。通過腹腔注射菸鹼醯胺(nicotinamide)和鏈脲佐菌素(streptozocin),結合高果糖飲食誘導Wistar大鼠T2DM模型,持續8周。用不同劑量的番石榴汁混和海藻糖餵養大鼠4周,檢測口服葡萄糖耐量試驗(Oral Glucose Tolerance Test, OGTT)、血漿胰島素(insulin)、糖化血色素(glycated hemoglobin, HbA1c)、胰島素抗性指數(Homeostasis Model Assessment-Insulin Resistance index, HOMA-IR)、β細胞功能和胰島素分泌指數(Homeostasis Model Assessment of β-cell function, HOMA-β)。我們也使用了免疫組織化學染色法、螢光染色法和西方墨點法來測定氧化和發炎程度,用化學發光分析儀測定了血清和腎組織活性氧類(Reactive Oxygen Species, ROS)濃度。 結果發現,番石榴汁中高含量的槲皮素對過氧化氫(Hydrogen Peroxide, H2O2)和次氯酸(hypochlorous acid, HOCl)有清除作用,而海藻糖對H2O2有選擇性清除作用,而對HOCl無清除作用。對於T2DM的OGTT、insulin、HbA1c、HOMA-IR和HOMA-β水平均有影響,而番石榴混和海藻糖對T2DM改變的參數,除HbA1c外均有顯著改善。番石榴汁混和海藻糖能顯著降低T2DM所增強的腎臟ROS、4-hydroxynonenal、caspase-3/apoptosis、LC3-B/autophagy,以及 IL-1β/pyroptosis的水平。研究結果顯示:番石榴汁混和海藻糖的攝取,對於因T2DM而損傷的胰臟和腎臟細胞,具有顯著的保護作用。 嚴重的高血糖能誘發氧化壓力,造成糖尿病膀胱(diabetic bladder),進而引發排尿功能障礙。我們在論文中探討了蘿蔔硫素(sulforaphane),一種具有抗氧化力的轉錄因子Nuclear factor erythroid 2-related factor 2(Nrf2)激活劑,是否具有預防糖尿病因高血糖而併發膀胱功能障礙的功用。糖尿病誘導前給予鏈脲佐菌素和蘿蔔硫素,用化學發光分析儀測定膀胱活性氧類,另用西方墨點法檢測粒線體功能、粒線體Bcl-2-associated X protein(Bax)和胞漿細胞色素cytochrome c、抗氧化防禦能力Nuclear factor erythroid 2-related factor 2/heme oxygenase-1(Nrf2/HO-1)、內質網壓力標誌物Activating transcription factor 6/C/EBP Homologous Protein(ATF-6/CHOP)和Caspase 3/poly ADP-ribose polymerase (Caspase 3/PARP)。糖尿病增加膀胱組織中Keap1的表現,並降低Nrf2的表現,與膀胱活性氧增加、粒線體Bax轉位、胞漿細胞色素(cytochrome c)釋放、ATF-6/CHOP、Caspase 3/PARP/apoptosis增加有關,通過增加排尿間隔時間和排尿時間導致排尿功能障礙。蘿蔔硫素能顯著活化Nrf2/HO-1軸的表現,減少膀胱活性氧、粒線體Bax轉位、細胞色素C釋放、ATF-6/CHOP和caspase 3/PARP/apoptosis,從而通過縮短排尿間期和排尿時間來改善排尿功能。根據研究結果,我們認為蘿蔔硫素通過激活Nrf2/HO-1信號通路保護了粒線體功能,並抑制糖尿病誘導的ROS、內質網壓力、細胞凋亡和排尿功能障礙。 研究顯示,天然植化素槲皮素與蘿蔔硫素,的確具有保護糖尿病大鼠泌尿系統之效益。Item 一條根萃取物活性成分改善環磷醯胺誘導膀胱功能障礙與病理機制之大鼠模式(2019) 吳宮頡; Wu, Kung-Chieh一條根(I-Tiao-Gung)在金門當地已經普遍被廣泛使用於治療風濕性疾病以及痠痛之傳統中草藥。而金門一條根屬於豆科植物的闊葉大豆(Glycine tomentella Hayata),且豐含天然植物雌激素黃酮類及酚類物質,有研究指出一條根具有抗發炎及抗氧化能力之功效。 膀胱過動症(OAB)是一種很常見且又很容易被忽略的疾病。膀胱過動症的起因是由多重因素所造成的,如尿道出口阻塞、細菌感染及尿路上皮受損等症狀,在病生理學上,當膀胱過動症確診後,會引起尿道損傷及慢性發炎的症狀。環磷醯胺(Cyclophosphamide, CYP)是一種化療藥物,具有高毒活性代謝物,在尿液中對膀胱產生急性或慢性之損傷,包含出血性膀胱炎。我們使用環磷醯胺腹腔注射誘導膀胱過動症的大鼠模式,當膀胱發炎時機械敏感性的傳入神經變得較敏感,將導致膀胱過動(Bladder hyperactivity)。膀胱發炎會引起活性氧(ROS)的產生,而活性氧是氧化壓力形成的原因之一,且其最終可能會導致膀胱功能障礙。 因此,我們探究內服給予中藥一條根萃取物中黃豆戒(Daidzin)活性成分對環磷醯胺誘導膀胱炎、氧化壓力、纖維化和發炎及膀胱過動症之治療潛力。本研究使用Wistar 大鼠,其CYP給予方式為腹腔注射,一條根及黃豆戒為口服管餵方式。我們透過西方墨點法檢測,蕈鹼受體M2和M3和P2X2和P2X3嘌呤能受體以及3-硝基酪氨酸(3-NT)和NADPH氧化酶4(NOX4)的表現,以及動物膀胱內壓與尿道外括約肌電圖相關之檢測。此外,我們透過超靈敏化學發光分析儀,從而確定了膀胱活性氧(ROS)的量,以及透過細胞因子陣列來確認多種細胞因子譜的表現包含在內的MMP-8和TIMP-1。我們結果顯示,一條根萃取中黃豆戒活性成可有效改善環磷醯胺誘導膀胱炎和恢復第二階段的活性作用(EUS-EMG),並抑制P2X2,P2X3,M3受體,3-NT,NOX4的表達。結論,一條根萃取成分和其主要活性成分黃豆戒可降低環磷醯胺誘導氧化壓力且可抑制環磷醯胺造成之MMP-8、TIMP-1、發炎和纖維化。Item 順鉑導致斑馬魚胚胎離子細胞氧化壓力與細胞凋亡(2020) 吳巧羚; Wu, Ciao-Ling順鉑為現今廣泛使用之化療藥物,卻伴隨腎毒性、神經毒性和耳毒性等副作用,其中主要限制施予劑量的因素為腎毒性。順鉑可經由銅離子運輸蛋白與有機陽離子運輸蛋白進入腎臟上皮細胞,造成腎小管損傷,目前哺乳動物細胞研究模式已知氧化壓力生成是順鉑造成細胞損傷的主要原因之一。斑馬魚是廣泛使用於毒理學研究與藥物測試的模式動物,其仔魚表皮分布的五型離子細胞與哺乳動物腎臟上皮細胞有許多相似之處,因直接暴露於環境,好操作且易觀察。本研究以斑馬魚仔魚表皮離子細胞作為研究順鉑腎毒性之工具,使用活體螢光染色觀察順鉑對離子細胞的影響,來證實順鉑會導致離子細胞氧化壓力生成、粒線體損傷和細胞凋亡。本實驗將斑馬魚胚胎浸泡於不同濃度的順鉑(0、50、100、300、500 或 1000 μM)進行長時間(4-100 hpf)或短時間(96-98 hpf)處理,再使用活體螢光染劑單染或共染的方式,標定斑馬魚仔魚卵黃囊上具粒線體活性離子細胞(Rhodamine 123/MitoTracker)與凋亡細胞(AcridineOrange),並探討當中活性氧化物的產生(CellROX/ MitoSOX)。斑馬魚胚胎分別在順鉑處理 96小時及 2 小時後,Rhodamine 123 標定具粒線體活性離子細胞數目均顯著下降,且凋亡細胞數目顯著上升;斑馬魚胚胎分別在順鉑處理 96 小時及 1 小時後,產生活性氧化物的離子細胞數目或 CellROX/MitoSOX 的螢光亮度均顯著上升。此外,將斑馬魚胚胎進行抗氧化劑 NAC(0、100、300、500 或 1000 μM)與順鉑的長時間共處理,發現 NAC 能降低胚胎的死亡率,並減緩順鉑對離子細胞所導致的氧化壓力與損害。由以上結果可證實順鉑會導致離子細胞氧化壓力生成和粒線體損傷,並引起細胞凋亡,而抗氧化劑 NAC 可作為順鉑毒性的保護劑。Item 新型AMPK活化劑Nstpbp168對於胰島分泌細胞的保護作用(2013) 邱富嶼; Fu-Yu ChiuNstpbp168是由植物分離出來的純化合物,在我們先前的研究發現它是一種新穎的AMPK活化劑。而本次研究目主要是探討Nstpbp168在氧化壓力及脂質毒性下對胰島素分泌細胞的活存率與活性氧化物產生是否是有正面影響。在氧化壓力的刺激下,胰島素分泌細胞RINm5F曝露於含有40 μM過氧化氫溶液,而後投予100 μM Nstpbp168培養十八小時,計數細胞的存活率與活性氧化物生成量。此外,在脂質毒性刺激方面,則是將RINm5F及肝臟細胞HepG2培養於含有100 μM Nstpbp168 及palmitate/BSA混合物的培養液,進而以MTT檢測其細胞存活率及DCFH-DA染劑觀察細胞內超氧物質含量的螢光圖像。研究的結果顯示,Nstpbp168可以在過氧化氫誘導之氧化壓力下呈現劑量依存的方式防止細胞死亡。此外,在NBT檢測的結果發現細胞經由Nstpbp168處理後能有效抑制過氧化氫所誘導出活性氧化物,並證明Nstpbp168對於AMPK的活化呈現劑量依存的關係。AMPK的拮抗劑Compound C可明顯阻止Nstpbp168的保護作用在過氧化氫對於胰島素分泌細胞產生的傷害。此外,Nstpbp168具有防止palmitae引起之細胞死亡,推論是藉由促進AMPK活化以減少活性氧的產生。綜以上所述,Nstpbp168對於細胞具有保護作用,可有效防止氧化性壓力及脂質累積之毒性所造成的傷害,而這些保護的功能可能均是藉由促進AMPK活化的機制所達成。Item Nrf2與神經退化性疾病:啟動子多型性與 以氧化壓力為目標的治療策略(2012) 巫逸琦; Yi-Ci WuNuclear factor-erythroid 2 (NF-E2)-related factor 2 (Nrf2)是basic leucine zipper (bZIP)的轉錄因子,可調節抗氧化路徑基因的活化,並維持細胞內氧化還原的平衡。氧化壓力的增加與許多神經性退化性疾病有相關性。舉例來說,帕金森氏症(PD)的致病機制就會受到氧化壓力的影響,增強Nrf2的活化會對於神經細胞有保護性的功效。在polyQ不正常擴增的脊髓小腦萎縮症中,擴增的CAG三核苷酸轉譯出的polyQ蛋白,聚集在細胞內增加細胞內的氧化壓力。本論文先以PCR-RFLP技術,對Nrf2基因啟動子-653 A/G、-651 G/A和-617 C/A多型性,進行帕金森氏症患者(n = 480)與年齡、性別配合的正常人(n = 526)的病例-對照組研究。結果多型性基因型、等位基因頻率、單套型等均並未發現相關性。另外,本研究建立誘導式ATXN3/Q14~75的Flp-In SH-SY5Y細胞株,添加retinoic acid誘導分化後,表現具有病理特徵的ATXN3/Q75融合蛋白會形成聚集,並伴隨神經纖維生長減緩。藉高通量影像分析及免疫轉漬分析,此細胞株處理中草藥NH004、NH008、NH021及NH008某組成份衍生物NH008-1可活化Nrf2的表現,並降低ATXN3/Q75融合蛋白的聚集,故可能發展為有潛能的治療策略。Item 以SCA3誘導細胞模式進行潛力新藥之篩選(2011) 陳星蓉; Hsing-Jung Chen小腦脊髓運動失調症第三型(spinocerebellar ataxia type 3; SCA3),亦稱Machado–Joseph disease (MJD),為小腦脊髓運動失調症眾多亞型中最常見的一型,屬於晚發性自體顯性遺傳的神經退化性疾病。主要是因為座落於14q24.3-q32的MJD1基因發生CAG三核苷酸過度擴增的現象,這些擴增的CAG序列會轉譯出含多麩醯胺酸(polyglutamine; polyQ)序列的蛋白質產物ataxin3 (AT3),突變的AT3會在細胞內聚集,透過蛋白質水解機制切割後,在細胞核內形成包含體(nuclear inclusions; NIs)產生細胞毒性使得細胞死亡。目前SCA3實際的致病機轉尚未明瞭,為了解AT3與SCA3病程中的致病機制,我們建立AT3誘導表現的PC12細胞模式。我們發現75Q細胞在氧化壓力以及蛋白質酶抑制劑處理過後會比27Q細胞更容易產生蛋白質聚集在細胞核以及細胞和周圍的現象,對於壓力藥物的耐受性也比27Q細胞要低許多。因此我們藉由建立的SCA3細胞模式做一系列新穎組蛋白去乙醯酶抑制劑(histone deacetylase inhibitors; HDACi)藥物篩選,結果發現某些抑制劑藥物確實能保護SCA3細胞,提升細胞存活率以及神經細胞分支生長,降低氧化壓力以及蛋白質聚集的現象,並增加組蛋白(histone)乙醯化及活化許多具神經保護性的訊息傳遞路徑例如Hsp27、ERK、 MnSOD 和NF-κB等。因此,組蛋白去乙醯酶抑制劑藥物或許可成為治療SCA3的良好候選療法。Item 第十七型脊髓小腦共濟失調症(SCA17)細胞模式的新穎化合物篩檢及氧化壓力研究(2011) 黃詩涵; Shih-Han Huang第十七型脊髓小腦運動失調症(spinocerebellar ataxias 17,簡稱SCA17)是起因於TATA-box binding protein (TBP)基因上的CAG三核苷重複序列重複擴增,導致轉譯出異常的polyQ蛋白。在正常人族群中polyQ蛋白重複的數目約25到42之間,而SCA17疾病的患者polyQ蛋白重複數目擴增至43到66之間。polyQ蛋白擴增會造成多胜肽的構型改變,促使蛋白質錯誤摺疊和聚集(aggregation),並進ㄧ步形成不溶性的蛋白包涵體(inclusion)。隨著對疾病致病機轉的瞭解增加,也使疾病治療的發展有很大的進展。本論文即建立表現EGFP標記、polyQ擴增的TBP N端蛋白的293細胞,處理合成的indole、quinoxaline化合物(由化學系姚清發和陳焜銘老師所提供),藉計算包含聚集物的細胞的比例,及不溶性TBP-EGFP融合蛋白定量,來檢測化合物對抑制polyQ蛋白聚集的效果。結果顯示338化合物降低融合蛋白聚集的程度比SAHA略好(64.3% vs. 66.1%;70.7% vs. 77.4%)。而且338的IC50 (396 μM)遠高於SAHA (31.4 μM),可能作為未來發展治療SCA17疾病的參考藥物。此外,由於擴增的polyQ蛋白會造成氧化壓力,增加粒線體功能損傷,本研究亦利用年齡與性別配對的淋巴細胞株,來檢測氧化壓力在SCA17疾病上扮演的角色,結果發現SCA17病人細胞較正常人細胞對氧化壓力的耐受性差。 關鍵字:第十七型脊髓小腦運動失調症、polyQ蛋白、氧化壓力
- «
- 1 (current)
- 2
- 3
- »