在可程式化系統晶片上之Fuzzy C-Means分群演算法設計

dc.contributor黃文吉zh_TW
dc.contributorWen-Jyi Hwangen_US
dc.contributor.author楊正存zh_TW
dc.contributor.authorCheng-Tsun Yangen_US
dc.date.accessioned2019-09-05T11:29:14Z
dc.date.available2011-7-13
dc.date.available2019-09-05T11:29:14Z
dc.date.issued2009
dc.description.abstract本論文提出一個具平行計算能力的Fuzzy c-means(FCM)演算法硬體架構,並且使用查表法(lookup table)為基礎的除法器,來減少分群處理及計算質量中心點的硬體資源複雜度和計算複雜度。此外,本硬體架構不需儲存權重矩陣(membership coefficients matrix),而是將權重值(membership coefficinets)的計算結果直接送入質量中心點的更新計算,達到減少記憶體資源消耗的目的。最後本論文所提出的硬體架構會在以FPGA為基礎的可程式化系統晶片設計(System On a Programmable Chip,SOPC)之平台上作實際的效能測試,由實驗的結果可知,本架構具備較低的計算複雜度與更高的效能。zh_TW
dc.description.abstractA cost-effective parallel VLSI architecture for fuzzy c-means clustering is presented. The architecture reduces the area cost and computational complexity for membership coefficients and centroid computation by employing lookup table based dividers. The usual iterative operations for updating the membership matrix and cluster centroid are merged into one single updating process to evade the large storage requirement. Experimental results show that the proposed solution is an effective alternative for cluster analysis with low computational cost and high performance.en_US
dc.description.sponsorship資訊工程學系zh_TW
dc.identifierGN0696470083
dc.identifier.urihttp://etds.lib.ntnu.edu.tw/cgi-bin/gs32/gsweb.cgi?o=dstdcdr&s=id=%22GN0696470083%22.&%22.id.&
dc.identifier.urihttp://rportal.lib.ntnu.edu.tw:80/handle/20.500.12235/106707
dc.language中文
dc.subject可重組計算zh_TW
dc.subject資料分群zh_TW
dc.subject模糊理論zh_TW
dc.subject現場可程式化閘陣列zh_TW
dc.subject可程式單晶片系統zh_TW
dc.subjectreconfigurable computingen_US
dc.subjectdata clusteringen_US
dc.subjectfuzzy systemen_US
dc.subjectFPGAen_US
dc.subjectsystem on programmable chipen_US
dc.title在可程式化系統晶片上之Fuzzy C-Means分群演算法設計zh_TW
dc.titleSoPC-based Fuzzy C-Means Clustering Algorithm Designen_US

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
n069647008301.pdf
Size:
1.06 MB
Format:
Adobe Portable Document Format

Collections