臺灣本島輪胎與路面磨耗顆粒排放物質流分析

No Thumbnail Available

Date

2024

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

臺灣人口稠密,交通密度十分之高,來自交通活動產生的細懸浮微粒污染已是社會大眾與學界關注的焦點,然而輪胎與路面磨耗的顆粒(TRWP)卻受到了忽視,國外研究已指出TRWP的滲出液對於特定水生生物具有致命毒性,因此了解TRWP在臺灣本島的排放量、移動途徑和環境分佈,對於路面非點源污染在水環境的管控具有積極的意義。本研究以物質流的方法估算使用階段中產生的臺灣本島TRWP年排放量,藉以填補臺灣在這方面短缺的資訊。估算結果顯示臺灣本島在2020年的TRWP排放量約為41,419.50~ 59,645.40公噸,相當於每人平均排放1.78~2.56公斤,其中總排放量最高者為自小客車,每車平均排放量最高者為大貨車。在環境分佈方面,研究中兩種情境下對大氣的貢獻皆為5.7%,在不假設水庫滯留的情境下,約有15.6%的TRWP會進入到農業土壤中滯留,剩餘的78.7%則會進入到海洋中,若考慮進入水庫的情境,則水庫中約會滯留13.4%的TRWP,農業土壤為13.3%,剩餘的67.6%則會進入到海洋中,兩種情境皆顯示了海洋做為TRWP最終歸宿的結果。本研究首次估算了臺灣本島TRWP的年排放量,同時對於其內含的潛在有害物質進行了初步的估算,結果顯示TRWP對於水域生態的潛在環境衝擊。除了排放量的估算外,對路面逕流與海洋污染的管控與預防亦提出了建議,期望透過硬體與軟體的結合,從源頭控制TRWP的產生,並在下游積極的處理已經產生的污染問題。雖然TRWP進入到環境後溶出的化學物質會對生物與人類產生何種衝擊,目前仍未有明確的定論,但在維護生態環境與人類健康福祉的目標下,我們有必要正視這項議題並及早因應,從而減少輪胎與道路磨耗顆粒對海洋及陸域生態的潛在威脅。
Due to the high traffic density in Taiwan, fine particulate pollution has become a major concern for the public and academia. However, the problem caused by tire and road wear particles (TRWP) has been ignored. Recent research has found out that the leachate from TRWP being highly toxic to certain aquatic organisms. Therefore, to understand the emissions, transport pathways, and environmental distribution of TRWP in Taiwan is crucial for controlling non-point source pollution from roads in aquatic environments.In this study, I estimate the yield of TRWP during the usage phase in Taiwan using a material flow approach, aiming to fill the gap in information in this field. The results indicate that the TRWP yield in Taiwan were approximately 41,419.50 to 59,645.40 tons, equivalent to an average emission of 1.78 to 2.56 kilograms per person. Among these, passenger cars contributed the highest total emissions, while large trucks had the highest average emissions per vehicle. Regarding environmental distribution, in both scenarios proposed in this study, the contribution of TRWP to the atmosphere is 5.7%. In the scenario without assuming reservoir retention, about 15.6% of TRWP is retained in reservoirs, 13.3% in agricultural soil, and the remaining 67.6% would enter the ocean. Both scenarios indicate that the ocean is the final destination for TRWP.This study is the first to estimate the annual emissions of TRWP in Taiwan and provides a preliminary estimation of the potentially harmful substances contained within TRWP. The results indicate the potential environmental impact of TRWP on aquatic ecosystems. In addition to estimating emissions, this study also offers recommendations for the control and prevention of road runoff and marine pollution by combining hardware and software solutions to control TRWP generation from the source and actively address existing pollution issues downstream.Although the exact impact of the chemical substances leached from TRWP on organisms and humans after entering the environment is still unclear, it is necessary to address this issue and respond early to reduce the potential threat of TRWP to marine and terrestrial ecosystems, with the goal of protecting ecological environments and human health and well-being.

Description

Keywords

輪胎, 輪胎與路面磨耗顆粒(TRWP), 路面逕流, 非點源污染, 水污染, 交通污染, 逕流處理, 環境衝擊, Tire, Tire and Road Wear Particles (TRWP), road runoff, nonpoint source pollution, aquatic pollution, traffic pollution, runoff treatment, environmental impact

Citation

Collections

Endorsement

Review

Supplemented By

Referenced By