The Derivation of Two Parallel Zero-Finding Algorithms of Polynomials

dc.contributor.author左臺益zh_tw
dc.contributor.authorTai-Yih Tsoen_US
dc.date.accessioned2020-09-03T06:26:43Z
dc.date.available2020-09-03T06:26:43Z
dc.date.issued1997-10-??
dc.description.abstract本文研究適合平行計算之二種演算法Weierstrass法及Aberth法以求解多項式之零位。我們說明由函數疊代分析可以導出此二種演算法。同時也驗證Weierstrass法可由不動點疊代法結合隱式除法計算導出,而牛頓法結合隱式除法可以計算出Aberth法。zh_tw
dc.description.abstractIn this paper we study the derivation of two famous algorithms for finding all zeros of a giving polynomial. These two algorithms which are the Weierstrass method and the Aberth method are highly suited for parallel computing. It is explained that both of the two algorithms can be arrived by the functional iteration analysis. We also show that the the Weierstrass method and the Aberth method can be derived by the fixed point iteration method and the Newton method, respectively, together with the implicit deflation scheme.en_US
dc.identifierD21883E5-D794-404A-A475-94B3BF6ED721
dc.identifier.urihttp://rportal.lib.ntnu.edu.tw:80/handle/20.500.12235/109305
dc.language英文
dc.publisher國立臺灣師範大學研究發展處zh_tw
dc.publisherOffice of Research and Developmenten_US
dc.relation42,1-6
dc.relation.ispartof師大學報:數理與科技類zh_tw
dc.subject.other平行計算zh_tw
dc.subject.other函數疊代分析zh_tw
dc.subject.other解零位zh_tw
dc.subject.other隱式除法zh_tw
dc.subject.otherParallel computingen_US
dc.subject.otherFunctional iteration analysisen_US
dc.subject.otherZeros-findingen_US
dc.subject.otherImplicit deflationen_US
dc.titleThe Derivation of Two Parallel Zero-Finding Algorithms of Polynomialszh-tw
dc.title.alternative解多項式零位之平行演算法zh_tw

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
ntnulib_ja_L0803_0042_001.pdf
Size:
209.85 KB
Format:
Adobe Portable Document Format