基於追蹤補償方法之籃球球員追蹤

dc.contributor李忠謀zh_TW
dc.contributorLee, Chung-Mouen_US
dc.contributor.author陳宥睿zh_TW
dc.contributor.authorChen, You-Rueien_US
dc.date.accessioned2024-12-17T03:37:18Z
dc.date.available2029-07-30
dc.date.issued2024
dc.description.abstract現今資訊科技蓬勃發展,電腦視覺技術經常應用於我們生活的周遭,而物件追蹤更是一項關鍵的技術,應用於自駕車、智慧行人追蹤和體育運動項目等領域。以籃球比賽中的球員為例,透過鏡頭追蹤球員在球場上的移動軌跡,可以對比賽進行詳細分析。針對現有的一般追蹤方法(YOLOv7+StrongSORT),由於球員間的遮擋或重疊,常常會發生球員ID變換(ID Switch)且無法復原該球員原有的ID(Identifier)的情況。為了解決這一問題,我們提出了追蹤補償方法,該方法能在ID變換時匹配回先前的ID,從而提升球員追蹤的準確性。 在實驗結果中,我們選擇了在一般追蹤方法之下加入球員追蹤補償方法的架構(實驗組)以及僅使用一般追蹤方法的架構(對照組)進行比較。在MOTA(Multiple Object Tracking Accuracy)的數據上,對照組與實驗組的表現都高於90%。在評估球員ID變換時復原球員ID的整體ID變換復原率(ID Switch Recovery Rate)上,使用球員追蹤補償方法的實驗組得到了74%的整體ID變換復原率,而對照組只有48%。在整體追蹤準確度上,實驗組的IDF1(Identification F-Score)達到79%,而對照組則只有66%。從數據結果表明,使用球員追蹤補償方法後,整體ID變換復原率有明顯的提升,能夠減少球員ID在變換後無法復原的問題,從而使得在整體追蹤準確度上,IDF1得到顯著提升。zh_TW
dc.description.abstractIn the current era of rapidly advancing information technology, computer vision technology is frequently applied in our daily lives. Object tracking, a critical technology, is used in fields such as self-driving cars, intelligent pedestrian tracking, and sports. For example, in basketball games, cameras can track players' movements on the court, allowing for detailed analysis of the game. Regarding existing general tracking methods (YOLOv7 + StrongSORT), player ID switching often occurs due to occlusion or overlap between players, and the original player ID (Identifier) cannot be recovered. To address this issue, we propose a tracking compensation method that can match the player’s previous ID during ID switching, thereby improving tracking accuracy. According to experimental results, we compared a frameworkincorporating the player tracking compensation method (experimental group) with a framework using only the general tracking method (control group). Both frameworks achieved MOTA (Multiple Object Tracking Accuracy) scores above 90%. For the overall ID switch recovery rate, the experimental group using the player tracking compensation method achieved a 74% recovery rate, while the control group only achieved 48%. In terms of overall tracking accuracy, the experimental group's IDF1 (Identification F-Score) reached 79%, compared to 66% for the control group. The data results indicate that the use of the player tracking compensation method significantly improves the overall ID switch recovery rate, reduces the problem of player IDs not being restored after switching, and leads to a notable enhancement in overall tracking accuracy as reflected in the IDF1 score.en_US
dc.description.sponsorship資訊工程學系zh_TW
dc.identifier60908018E-45676
dc.identifier.urihttps://etds.lib.ntnu.edu.tw/thesis/detail/b5ec338d244fa1da50c9334c9b342b27/
dc.identifier.urihttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/123689
dc.language中文
dc.subject行人追蹤zh_TW
dc.subject物件偵測zh_TW
dc.subject機器學習zh_TW
dc.subject運動科技zh_TW
dc.subjectpedestrian trackingen_US
dc.subjectobject detectionen_US
dc.subjectmachine learningen_US
dc.subjectsports technologyen_US
dc.title基於追蹤補償方法之籃球球員追蹤zh_TW
dc.titleBasketball Player Tracking Based on Tracking Compensation Methoden_US
dc.type學術論文

Files

Collections