The Methods and Error Estimations on the Second-Order Differential Equations
| dc.contributor.author | 楊壬孝 | zh_tw |
| dc.date.accessioned | 2014-10-27T15:24:37Z | |
| dc.date.available | 2014-10-27T15:24:37Z | |
| dc.date.issued | 1987-06-?? | zh_TW |
| dc.description.abstract | 本文中,我們將研究下列兩種類別的二階微分方程式的之修飾解法:對於第一類型(Ⅰ)的解法,目前有套裝軟體發展,如PHASER,其中使用的方法有Euler's Method, Improved Euler's Method, 及Runge-Kutta Method。但為使解更精確,我們採用Multistep method且使用Predictor-corr-hod的技巧,通常,我們為了控制錯誤至最小,最主要是要使用每一部份的答案均應準確。因此,我們發展一修飾的解法(融合Runge-Kutta Method, Adams-Bashforth Method, Adams-Moulton Method)並適當選取一小數r(見第一部份文中演算法之步驟2)來解決此問題。對於第二類型(P)的解法通常使用打靶法及有限差分法,但為顧及穩定性,我們採用有限差分法後再加以改進。然後,我們在討論此解法具較高的精確度。 | zh_tw |
| dc.description.abstract | In this paper, we solve the Initial Value Problem (IVP) by a Modified Predictor-Corrector method. We can prove it has trucncation error O(h4) and it is stable. For Boundary Value Problems (BVP), Shooting method and Finite-Difference method are often used. We improve these methods and get some theorems and error estimations. | en_US |
| dc.identifier | 79369990-FEEB-50F6-6980-212A2FF41D6A | zh_TW |
| dc.identifier.uri | http://rportal.lib.ntnu.edu.tw/handle/20.500.12235/17320 | |
| dc.language | 英文 | zh_TW |
| dc.publisher | 國立臺灣師範大學研究發展處 | zh_tw |
| dc.publisher | Office of Research and Development | en_US |
| dc.relation | (32),381-399 | zh_TW |
| dc.relation.ispartof | 師大學報 | zh_tw |
| dc.subject.other | 二階 | zh_tw |
| dc.subject.other | 微分方程式 | zh_tw |
| dc.title | The Methods and Error Estimations on the Second-Order Differential Equations | zh-tw |
| dc.title.alternative | 二階微分方程式的解法及其估計 | zh_tw |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- ntnulib_ja_L0801_0032_381.pdf
- Size:
- 494 KB
- Format:
- Adobe Portable Document Format