The Methods and Error Estimations on the Second-Order Differential Equations

dc.contributor.author楊壬孝zh_tw
dc.date.accessioned2014-10-27T15:24:37Z
dc.date.available2014-10-27T15:24:37Z
dc.date.issued1987-06-??zh_TW
dc.description.abstract本文中,我們將研究下列兩種類別的二階微分方程式的之修飾解法:對於第一類型(Ⅰ)的解法,目前有套裝軟體發展,如PHASER,其中使用的方法有Euler's Method, Improved Euler's Method, 及Runge-Kutta Method。但為使解更精確,我們採用Multistep method且使用Predictor-corr-hod的技巧,通常,我們為了控制錯誤至最小,最主要是要使用每一部份的答案均應準確。因此,我們發展一修飾的解法(融合Runge-Kutta Method, Adams-Bashforth Method, Adams-Moulton Method)並適當選取一小數r(見第一部份文中演算法之步驟2)來解決此問題。對於第二類型(P)的解法通常使用打靶法及有限差分法,但為顧及穩定性,我們採用有限差分法後再加以改進。然後,我們在討論此解法具較高的精確度。zh_tw
dc.description.abstractIn this paper, we solve the Initial Value Problem (IVP) by a Modified Predictor-Corrector method. We can prove it has trucncation error O(h4) and it is stable. For Boundary Value Problems (BVP), Shooting method and Finite-Difference method are often used. We improve these methods and get some theorems and error estimations.en_US
dc.identifier79369990-FEEB-50F6-6980-212A2FF41D6Azh_TW
dc.identifier.urihttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/17320
dc.language英文zh_TW
dc.publisher國立臺灣師範大學研究發展處zh_tw
dc.publisherOffice of Research and Developmenten_US
dc.relation(32),381-399zh_TW
dc.relation.ispartof師大學報zh_tw
dc.subject.other二階zh_tw
dc.subject.other微分方程式zh_tw
dc.titleThe Methods and Error Estimations on the Second-Order Differential Equationszh-tw
dc.title.alternative二階微分方程式的解法及其估計zh_tw

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
ntnulib_ja_L0801_0032_381.pdf
Size:
494 KB
Format:
Adobe Portable Document Format

Collections