以Kernel為基礎之模糊分群演算法硬體架構實現

dc.contributor黃文吉zh_TW
dc.contributorWen-Jyi Hwangen_US
dc.contributor.author歐浩聲zh_TW
dc.contributor.authorOu, Hao-Shengen_US
dc.date.accessioned2019-09-05T11:45:57Z
dc.date.available2012-8-20
dc.date.available2019-09-05T11:45:57Z
dc.date.issued2012
dc.description.abstract本論文根據文獻[12]以及文獻[17],以此兩則文獻中提到的FCM-SC分群演算法的硬體架構和KFCM演算法的硬體架構為基礎,實作以非線性高斯核函式為核距離計算之KFCM[12] 再加上空間資訊[17] 後的分群演算法硬體電路,具有管線化以及可以同時計算所有分群之權重係數的能力。此架構改良了以往KFCM分群演算法對於有雜訊的資料做分群的問題,並且配合KFCM本身可以對非線性資料分群效果較好的能力,所以能夠廣泛地使用在許多的分群資料上,並且都有良好的辨識率。本論文使用FPGA實現我們提出的硬體架構,並使用人工雜訊圖片作為實驗測試資料。實驗結果顯示本架構對於有雜訊的非線性資料分群效果確實較KFCM佳,且架構簡單提供了日後高度的延伸性。zh_TW
dc.description.abstractBased on the FCM-SC (Fuzzy C-Mean with spatial constraint) architecture in reference [12] and the KFCM (Kernel-Based Fuzzy C-Means) architecture in reference [17], KFCM-SC (Kernel-Based Fuzzy C-Means with spatial constraint) hardware architecture is proposed here with non-linear Gaussian kernel function and spatial constraint. Moreover, the KFCM-SC architecture also takes the advantage of the pipeline and it can compute all of the membership coefficients and centers concurrently. Compared to KFCM architecture, KFCM-SC architecture improves the segmentation ability for noisy data by computing the spatial information. With these advantages, it can deal with the non-linear data due to the kernel function, KFCM-SC architecture can be applied to wide of data and it can achieve better segmentation results. KFCM-SC architecture is implemented on FPGA and tested with noisy picture data. The segmentation result shows that KFCM-SC architecture definitely has a better ability with non-linear noisy data compared to KFCM. Because of the simple architecture of the KFCM-SC, it can be extended easily.en_US
dc.description.sponsorship資訊工程學系zh_TW
dc.identifierGN0699470656
dc.identifier.urihttp://etds.lib.ntnu.edu.tw/cgi-bin/gs32/gsweb.cgi?o=dstdcdr&s=id=%22GN0699470656%22.&%22.id.&
dc.identifier.urihttp://rportal.lib.ntnu.edu.tw:80/handle/20.500.12235/106927
dc.language中文
dc.subject可程式邏輯陣列zh_TW
dc.subjectKFCM演算法zh_TW
dc.subjectFCM-SC演算法zh_TW
dc.subject系統程式晶片設計zh_TW
dc.subjectKFCM-SC演算法zh_TW
dc.subjectFPGAen_US
dc.subjectKFCM algorithmen_US
dc.subjectFCM-SC algorithmen_US
dc.subjectSOPCen_US
dc.subjectKFCM-SC algorithm.en_US
dc.title以Kernel為基礎之模糊分群演算法硬體架構實現zh_TW
dc.titleFPGA Implementation for Kernel-Based Fuzzy C-Means algorithm with Spatial Constrainten_US

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
n069947065601.pdf
Size:
2.97 MB
Format:
Adobe Portable Document Format

Collections