急性健身運動對早產兒執行功能之影響:事件關聯電位研究
No Thumbnail Available
Date
2021
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
近年來許多研究已針對典型發展兒童與各種不同族群之孩童進行急性健身運動介 入研究,也發現急性健身運動介入對執行功能帶來正面效益,但仍較少研究針對早產兒 族群進一步做探討,而早產兒占新生兒比例居高不下,研究指出早產可能對執行功能有 負面影響,故本研究欲能藉由急性健身運動介入改善早產兒執行功能表現。本研究目的 為:(一)急性健身運動對早產兒及足月出生孩童作業轉換表現之影響。(二)急性健身 運動對早產兒及足月出生孩童作業轉換所誘發之事件關聯電位 P3 振幅之影響。本研究 假設為:(一)相較於足月出生孩童,急性健身運動對早產兒作業轉換表現之效益較大。 (二)相較於足月出生孩童,急性健身運動對早產兒作業轉換所誘發之 P3 振幅較大。 本實驗招募 25 名 10~16 歲早產孩童與 25 名 10~16 歲足月出生孩童;兩組皆進行 30 分鐘有氧運動介入與觀看影片之控制情境,介入後進行執行功能檢測。本研究結果顯示, 無論有無運動介入,兩組反應時間與準確率之同質情境優於異質情境、非轉換情境優於 轉換情境。在運動介入後,局部性作業轉換之反應時間較短與準確率較高,全面性作業 轉換與局部性作業轉換之 P3 振幅大於控制情境。本研究發現運動介入無論是在早產兒 或是足月出生孩童對執行功能與事件關聯電位皆有正面效益。因此鼓勵孩童有規律有氧 健身運動,可能可以提升認知功能表現。
Recently, many research have been conducted with regard to acute exercise intervention studies targeting typically developing children and special population. Meanwhile, previous studies have shown that acute exercise has positive effects on executive function, there are still relatively few studies have explored the preterm population. Due to the fact that premature babies account for a high proportion of newborns, and studies have pointed out that preterm birth may have a negative impact on executive function, therefore, this study concerning acute exercise was expected to improve executive function performance of children born preterm. The purpose of this study was to investigate the effects of acute exercise on task switching performance and electrophysiological indices in preterm born and full-term children. It was hypothesized that preterm born children would receive a lager acute exercise-elicited compared to the full-term children. The 25 preterm born children and 25 full-term children, aged 10-16 years, were engaged in a 30-min intervention that consisted of either acute stationary cycling exercise or watching a video on alternative day. The cognitive test was assessed after an intervention. The results revealed that, 30-min treatment or no-treatment control conditions resulted in shorter response time and increased accuracy rates for the homogeneous session and the non-switch condition compared with the heterogeneous session and the switch condition, regardless of group. After the exercise intervention, exhibited faster response times and more accuracy in global switch. Similarly, larger P3 amplitudes were observed in exercise condition compared to the control condition in both global switch and local switch. These findings suggest that acute exercise-induced improvements in executive function and neurophysiological status of preterm born or full-term children. We recommend can use regular aerobic exercise to improve cognitive performance of children.
Recently, many research have been conducted with regard to acute exercise intervention studies targeting typically developing children and special population. Meanwhile, previous studies have shown that acute exercise has positive effects on executive function, there are still relatively few studies have explored the preterm population. Due to the fact that premature babies account for a high proportion of newborns, and studies have pointed out that preterm birth may have a negative impact on executive function, therefore, this study concerning acute exercise was expected to improve executive function performance of children born preterm. The purpose of this study was to investigate the effects of acute exercise on task switching performance and electrophysiological indices in preterm born and full-term children. It was hypothesized that preterm born children would receive a lager acute exercise-elicited compared to the full-term children. The 25 preterm born children and 25 full-term children, aged 10-16 years, were engaged in a 30-min intervention that consisted of either acute stationary cycling exercise or watching a video on alternative day. The cognitive test was assessed after an intervention. The results revealed that, 30-min treatment or no-treatment control conditions resulted in shorter response time and increased accuracy rates for the homogeneous session and the non-switch condition compared with the heterogeneous session and the switch condition, regardless of group. After the exercise intervention, exhibited faster response times and more accuracy in global switch. Similarly, larger P3 amplitudes were observed in exercise condition compared to the control condition in both global switch and local switch. These findings suggest that acute exercise-induced improvements in executive function and neurophysiological status of preterm born or full-term children. We recommend can use regular aerobic exercise to improve cognitive performance of children.
Description
Keywords
急性健身運動, 早產, 執行功能, 作業轉換, acute exercise, preterm birth, executive function, task switching