四旋翼飛行器 LQR 控制器的設計與實現
No Thumbnail Available
Date
2025
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
本研究採用了線性二次調節器(LQR)控制器來實現對四旋翼飛行器飛行姿態的精確控制。隨著科技的進步,四旋翼飛行器在設計與控制技術上都有了顯著的演進,並且歷經多種控制策略的嘗試與優化,以有效管理其複雜的飛行姿態與穩定性。LQR作為一種經典的最優控制方法,具備良好的狀態反饋能力和性能表現,在本研究中被用來實現對飛行器垂直高度的穩定控制。本控制系統結合了LQR控制演算法與多種感測器的即時數據輸入,能夠有效掌握四旋翼在飛行過程中的姿態變化與高度狀態,並根據目標高度進行精準調整。透過該方法,四旋翼得以順利抵達並維持在預定的飛行高度,顯示出此控制策略在實際應用中的穩定性與可靠性。此外,論文中也提供實驗數據與測試結果,進一步驗證了此控制系統的有效性與可行性。這些實驗包括在不同初始條件與外部干擾下的飛行測試,結果證實LQR控制器能夠快速響應並有效抑制震盪與偏移,使四旋翼系統具備良好的動態性能與控制精度,展現出此方法在無人機控制領域中的實用潛力。
This study employs a Linear Quadratic Regulator (LQR) to achieve precise attitude control of a quadrotor UAV. With ongoing advancements in design and control strategies, LQR, a classical optimal control strategy renowned for its robust state feedback performance, has been implemented to achieve vertical position stabilization.The proposed system integrates LQR control with real-time sensor data to monitor and adjust the quadrotor’s attitude and altitude. This enables accurate tracking of target height and demonstrates reliable in-flight stability under practical conditions.Experimental results validate the effectiveness of the proposed LQR-based system under varying initial conditions and external disturbances. The controller demonstrated fast response, disturbance rejection, and high precision, highlighting its practical potential for UAV applications.
This study employs a Linear Quadratic Regulator (LQR) to achieve precise attitude control of a quadrotor UAV. With ongoing advancements in design and control strategies, LQR, a classical optimal control strategy renowned for its robust state feedback performance, has been implemented to achieve vertical position stabilization.The proposed system integrates LQR control with real-time sensor data to monitor and adjust the quadrotor’s attitude and altitude. This enables accurate tracking of target height and demonstrates reliable in-flight stability under practical conditions.Experimental results validate the effectiveness of the proposed LQR-based system under varying initial conditions and external disturbances. The controller demonstrated fast response, disturbance rejection, and high precision, highlighting its practical potential for UAV applications.
Description
Keywords
四旋翼無人機, LQR 控制, 高度控制, Quadcopter, LQR control, altitude control