A Path-Following Interior Point Algorithm for Smooth Convex Programming

dc.contributor.author朱亮儒zh_tw
dc.date.accessioned2014-10-27T15:25:41Z
dc.date.available2014-10-27T15:25:41Z
dc.date.issued1996-06-??zh_TW
dc.description.abstract本文主要在探討數學規劃中,近年來常被用來找近似解的內點法。在本論文中我們推廣Monteiro和Adler的沿路徑內點法(path-following interi or point algorithm)以求解圓滑凸規劃問題,並分析探討其運算次數(arithmetic operation)之複雜性(complexity),在原問題有一嚴格可行解的條件下,我們證明這種內點法僅需要 ○(□l)迭代次數(iterations),且整個運算過程僅需○(n�爐)個算數運算(arithmetic operations)。其結果應用在凸二次規劃(convex quadratic programming)或線性規劃(linear programming)問題時是最理想化的。更進一步地,我們的內點法所產生的每一極限點都是其對應的互補問題(complementarityproblem)的最大互補解。zh_tw
dc.description.abstractWe extend the Monteiro-Adler path-following interior point algorithm for solving smooth convex programming. Under a kind of strict feasibility assumption, we show that the algorithm under modification requires a total of ○(□l) number of iterations, and the total arithmetic operations are not more than ○(n�爐), where l is the initial input size. As an application to usual linear or convex quadratic programming, this algorithm solves the pair of primal and dual problems in at most ○(□L) iterations, and the total arithmetic operations are shown to be of the order of ○(n�鶉), where L is the input size. Moreover, we show that any sequence (x��,s��) generated by the algorithm is bounded, and that every cluster point is a maximal complementary solution in the sense of McLinden [16,17].en_US
dc.identifierB35DACD2-029E-AD58-5023-89859C16A35Ezh_TW
dc.identifier.urihttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/17563
dc.language英文zh_TW
dc.publisher國立臺灣師範大學研究發展處zh_tw
dc.publisherOffice of Research and Developmenten_US
dc.relation(41),393-434zh_TW
dc.relation.ispartof師大學報zh_tw
dc.subject.other解圓滑凸規劃zh_tw
dc.subject.other沿路徑內點法zh_tw
dc.subject.otherSmooth convex programmingen_US
dc.subject.otherPath-following interior point algorithmen_US
dc.subject.otherComplementarity problemen_US
dc.subject.otherMaximal complementary solutionen_US
dc.titleA Path-Following Interior Point Algorithm for Smooth Convex Programmingzh-tw
dc.title.alternative一個解圓滑凸規劃的沿路徑內點法zh_tw

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
ntnulib_ja_L0801_0041_393.pdf
Size:
843.25 KB
Format:
Adobe Portable Document Format

Collections