A Path-Following Interior Point Algorithm for Smooth Convex Programming
dc.contributor.author | 朱亮儒 | zh_tw |
dc.date.accessioned | 2014-10-27T15:25:41Z | |
dc.date.available | 2014-10-27T15:25:41Z | |
dc.date.issued | 1996-06-?? | zh_TW |
dc.description.abstract | 本文主要在探討數學規劃中,近年來常被用來找近似解的內點法。在本論文中我們推廣Monteiro和Adler的沿路徑內點法(path-following interi or point algorithm)以求解圓滑凸規劃問題,並分析探討其運算次數(arithmetic operation)之複雜性(complexity),在原問題有一嚴格可行解的條件下,我們證明這種內點法僅需要 ○(□l)迭代次數(iterations),且整個運算過程僅需○(n�爐)個算數運算(arithmetic operations)。其結果應用在凸二次規劃(convex quadratic programming)或線性規劃(linear programming)問題時是最理想化的。更進一步地,我們的內點法所產生的每一極限點都是其對應的互補問題(complementarityproblem)的最大互補解。 | zh_tw |
dc.description.abstract | We extend the Monteiro-Adler path-following interior point algorithm for solving smooth convex programming. Under a kind of strict feasibility assumption, we show that the algorithm under modification requires a total of ○(□l) number of iterations, and the total arithmetic operations are not more than ○(n�爐), where l is the initial input size. As an application to usual linear or convex quadratic programming, this algorithm solves the pair of primal and dual problems in at most ○(□L) iterations, and the total arithmetic operations are shown to be of the order of ○(n�鶉), where L is the input size. Moreover, we show that any sequence (x��,s��) generated by the algorithm is bounded, and that every cluster point is a maximal complementary solution in the sense of McLinden [16,17]. | en_US |
dc.identifier | B35DACD2-029E-AD58-5023-89859C16A35E | zh_TW |
dc.identifier.uri | http://rportal.lib.ntnu.edu.tw/handle/20.500.12235/17563 | |
dc.language | 英文 | zh_TW |
dc.publisher | 國立臺灣師範大學研究發展處 | zh_tw |
dc.publisher | Office of Research and Development | en_US |
dc.relation | (41),393-434 | zh_TW |
dc.relation.ispartof | 師大學報 | zh_tw |
dc.subject.other | 解圓滑凸規劃 | zh_tw |
dc.subject.other | 沿路徑內點法 | zh_tw |
dc.subject.other | Smooth convex programming | en_US |
dc.subject.other | Path-following interior point algorithm | en_US |
dc.subject.other | Complementarity problem | en_US |
dc.subject.other | Maximal complementary solution | en_US |
dc.title | A Path-Following Interior Point Algorithm for Smooth Convex Programming | zh-tw |
dc.title.alternative | 一個解圓滑凸規劃的沿路徑內點法 | zh_tw |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- ntnulib_ja_L0801_0041_393.pdf
- Size:
- 843.25 KB
- Format:
- Adobe Portable Document Format